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Abstract. The “self-organizing” dynamics of Self-Organizing Maps (SOMs) is a
prominent property of the model that is intuitively very accessible. Nevertheless, a
rigorous definition of a measure for the state of organization of a SOM that is also
natural, captures the intuitive properties of organization and proves to be useful in
practice, is quite difficult to formulate. The goal of the paper is to give an overview
over the relevant problems in and different approaches towards the development of
organization measures for SOMs.

1 Introduction

1.1 Self-Organization

The first use of the notion of “self-organization” can be traced back to 1947
(Ashby 1947; Shalizi 1996). Yet, through the last half-century, a satisfactory
universal definition of self-organization has not been found. Instead, the de-
gree of self-organization has always been measured with measures constructed
ad hoc for the system at hand, requiring some interpretation of the system
induced by an observer.

Kohonen Maps represent the phenomenon of self-organization in such
a paradigmatic way that they are often simply referred as Self-Organizing
Maps (SOMs), as in the title of this review. The whole spectrum of questions
associated with the phenomenon of self-organization emerges in conjunction
with the study of SOMs. The topic of the present review bears close relations
to this fundamental question. Because of the limitation of this review’s scope,
this question will not be studied in its own right, but its connection to the
present discussions should always be borne in mind.

1.2 Supervised and Unsupervised Learning

An important distinction that is made in the study of neural networks is
determined by the learning rule which is applied to the network under con-
sideration. Learning rules are divided into the main classes of supervised and
unsupervised rules as well as into some smaller classes which cannot be as-
sociated with the former classes in a definite way and which will not be
considered further.

In the supervised case, the teacher provides a set of training examples,
each of which consists of input data and corresponding target output data.
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The usual application of neural nets is then to model an input-output relation
implied by this data set. The learning rule is expected to achieve a “suitable”
correspondence between the target and the actual output values by adapting
the structure and weights of the network. The suitability is measured by an
explicit deviation function; e.g., in the case of backpropagation networks, by
the squared error 1/23 [ly#) —ap(x))||2, where (x(), y(#), are the input-

output pairs of the training data and ¢(x(#)) is the real output of the network
when the input x(*) is applied.

In the unsupervised case, however, no target output and no explicit de-
viation from a learning target is specified. In the case of Kohonen’s SOM,
however, the dynamics of the system is given a priori by the learning rule
and not derived from some explicit measure of deviation from a target state.
Nevertheless the Kohonen learning algorithm causes a process to take place
which human intuition is prone to describe as “self-organizing”. The “organi-
zation” of the system can be intuitively detected by visual inspection of the
graphical representation of SOMs during training. But “intuitive detection”
and mathematical quantification are different things. This is in contrast to
supervised learning methods with a canonical organization measure. Such a
measure would determine how well data are being described by the neural
network. For a self-organizing network such a measure would provide some
a priori characterization of intrinsic organization.

In the presentation, no explicit distinction will be made between different
types of notions, like organization measures, quantization measures, notions
or measures of topology preservation. Instead, throughout the paper the term
organization measure will be used for functions that assign real values to a
SOM in a given state if it fulfills certain conditions (Sec. 2.4).

1.3 On this Paper

Before embarking on details of the different models, some remarks are in
place to make clear how this paper should be used. The paper provides an
introduction, overview and categorization of a large selection of different ap-
proaches to quantify organization in SOMs and topographic mapping models
related to it. The selection of available approaches is vast and cannot be com-
prehensively treated, so this review will concentrate on most important and
influential approaches and give pointers for further information. The idea is
to provide the reader with an overview of the most relevant aspects of struc-
ture, philosophy and properties of currently existing approaches and with
pointers for more extensive studies.

2 General Aspects and Definitions

In general, we will assume two spaces, an input space V and an output space
A, to which signals from V' are mapped. The input space considered will often
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be continuous (typically the R?), the output space will often be discrete, but
sometimes we will consider other types of output spaces, too.

2.1 A Typology of Organization Measures

Several aspects are important to distinguish the different approaches to mea-
sure organization. We will discuss them in the following.

1st-order vs. 2nd-order measures We do not only consider “pure” orga-
nization measures that quantify the organizational structure of the mappings,
but also include measures of distortion or quantization and information trans-
mission (entropy). The reason is that the latter measures can be considered
1st-order measures, whereas the former are 2nd-order measures. If we speak
of 1st-order measures, we intend to say that the measure value is obtained
by combination of values (e.g. activation frequency or intensity) obtained for
individual neurons, whereas in 2nd-order the final value of the measure re-
sults from a combination of values (e.g. similarity or distance) obtained for
pairs of neurons into a single number.

Data-orientation The approaches to measure organization can be classified
according to whether they include the structure of the data to map in their
quantification or not. With data-oriented measures, Structurally equivalent
mappings can thus obtain completely different measure values for the same
type of measure, depending on the structure of the data.

Dynamics and structure The construction of many measures is oriented
at quantifying the quality of typically the final stage of a mapping. The quan-
tification of the dynamic development of the mapping is usually considered in
a separate context since in general. Typical representants for measures of the
dynamics are Liapunov functions. This class can sometimes be specialized to
consider energy functions, if they exist. There exist mapping scenarios (see
(Graepel et al. 1998) and also Sec. 3.3), for which an energy function can be
formulated. Note that it is not obvious what a Liapunov function has to do
with what we consider a good organization. Nevertheless it is important for
mathematical analysis of the training process.

Predicates, measures and order parameters There are several notions
of topology preservation that just distinguish the cases of a mapping being
ordered or not. However, this characterization has a different quality than
measures that attribute a numerical value to the disordered case. The first
case can be regarded as a logical predicate that defines the notion of a map-
ping being ordered (or disordered) in a strict mathematical sense. When,
say, the ordering predicate is not fulfilled, then the degree of disorder, i.e.
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the deviation from the ordered case can now further be quantified. For the
quantification of the deviation there exists a high degree of arbitrariness.

An organization measure could be devised in such a way that it attains
some extreme (either minimum or maximum) value for the ordered case and
deviates from that value the “farther” in the disordered regime the mapping
is. We find types of this kind of measures in (Villmann et al. 1997; Goodhill
et al. 1995).

The philosophy is similar to that of order parameters known for thermo-
dynamics (Reichl 1980). Order parameters are used in physics to distinguish
different types of equilibrium states in physical systems. Usually, they are
chosen such that their value vanishes in states with a higher distributional
symmetry and deviates from 0 when the symmetry of the state distribution
is broken. The order parameter view has been directly used for the study
of SOMs and related models (Ritter and Schulten 1989; Der and Herrmann
1993; Graepel et al. 1997). A study that reverses that direction and uses an
independently constructed organization measure (Zrehen and Blayo 1992) as
a kind of order parameter is (Spitzner and Polani 1998).

Topology and geometry Mapping organization is often seen as equivalent
to topology preservation. In the strictest sense, most measures are not mea-
suring topology preservation. Instead, they use a mixture of topological, sim-
ilarity, metrical, or even further geometrical properties of the spaces mapped.
The measures may be incorporating similarity or metric values themselves or
just their relative ordering.

We give a short classification over some of the approaches.

“Pure” topology measures Only very few measures for organization have been
formulated in notions of “pure” topology. One of the problems in finding such
a formulation that one of the spaces involved in a SOM mapping is usually
discrete. For these spaces, the canonical topology is the discrete topology.
This is a very uninteresting case since it essentially implies a complete lack
of structure..

One approach to explicitly solve the problem has been brought forward
in (Villmann et al. 1997) by using a collection of “marked” discrete spaces
on which a topology is defined w.r.t. to the respective marked element. This
approach requires an extension of the regular notion of topology on the dis-
crete space. In addition, the topological structures considered by Villmann
et al. are induced by metric structures.

Driven from considerations of the maximization of information transmis-
sion by the mappings, equiprobable mapping methods have been investigated
(Hulle 1997; Van Hulle 1997; Hulle 2000). In the present review, we wish to
point out that the structure introduced in that papers on the discrete space
can be interpreted as a compler, a structure known from algebraic topology
(Henle 1979). A complex can be seen as a generalization of the notion of a
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graph. However, no invocation of metric structures is required for its defini-
tion, thus the method and the measures derived from it can be regarded as
a truly pure topological notions.

Similarity and metrics In the spaces, the pairs of elements have to be com-
pared for the mapping organization to be quantified. This can happen on the
graph level by determining whether the elements of the space are adjacent.
A second, more general way of doing it is to define a measure on the space
that determines how similar the elements of the space are. a similarity mea-
sure needs not to have a metric or geometrical interpretation as opposed to
a metric which has to fulfil the triangle inequality. The triangle inequality
of a metric, on the other hand, can be interpreted as a kind of geometrical
generalization of the transitivity property of a linear ordering relation.

It is therefore quite natural to include graph-based spaces at this point.
A graph can both be interpreted as a topological and as a metrical structure.
However, it is not possible to fully exploit the graph structure as a purely
topological construct in the case of more than & = 1 dimensions and one
has to resort to structures like topological complexes (Sec. 3.7). However,
there is always the possibility to exploit the graph as a metric (and thus, e.g.
via some neighborhood function also as similarity quantity). This makes the
graph structure to a very natural model for the output space V. Indeed, in
many mapping scenarios, output spaces are modeled as graphs.

Geometry Further geometrical properties are used only by very few models to
quantify organization. Alder et al. (1991) present an approach that assumes
a rectangular grid as output space and is related to curvature measures of
Riemannian spaces.

2.2 Definitions

We have seen in Sec. 2.1 that for the output space graph structures prove to
be the most versatile models. Therefore, in the definition of the basic SOM
model the output space will be based on a graph.

Definition 1 (Self-Organizing Map). Define the state of a SOM as a
map w : A = V from a discrete finite set A of (formal) neurons to a convex
subset V' of R?, the input space, mapping each neuron j to its weight w;. We
will often simply say SOM instead of SOM state.

Let Cx C Ax A be the adjacency structure of an undirected graph without
weights with the set A of neurons as vertex set. This graph will be called the
Kohonen graph.

The Kohonen graph induces a metric d4 on A, by defining d4 (i, j) as the
minimum distance between two neurons i,j € A, where d(i,5) = 1 for two
adjacent neurons. Unless stated otherwise, on V' the Euclidean metric is used
as dy.
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Given an initial SOM state w(0), a SOM training sequence (w(t))
is defined by the applying the Kohonen learning rule

t=1,2,...

Av () = e(t) - b (g (@) 5) (2(8) = wit)) &)

to all neurons j with Aw;(t) = w;(t + 1) — w;(¢). Here x(¢) is the training
input at time ¢, €(t) the learning rate, h; the activation profile and ijv( f & func-
tion where il ) (z(t)) is a neuron 7 minimizing the distance dy (x(t), w;(t))-
In the following we will write i* instead of i:‘v(t) for notational convenience.

V is called input space. i* is the quantization function. For x € V| we say
that input signal x activates the neuron i*(z). For a given neuron i, the set
Vi := i*71(i) of inputs from V that activate this neuron is called its receptive
field. Tts closure, V;, is called the Voronoi cell of i w.r.t. the set of points
{w | k € A} if dv is Euclidean. In that case, for a given SOM state w, the
receptive field of a neuron i is uniquely defined on its interior except for a
Lebesgue null set!.

The quantization function i* can be regarded as a lossy compression for
signals from V into an event represented by a neuron ¢ € A. The inverse
direction is information-conserving, as i}, is a left-inverse map to w.

2.3 Metrics and Topology

The restriction to graph-induced metrics or graph metrics on A nevertheless
enables the realization of important metric structures on standard configura-
tions like an n-dimensional grid. Fig. 1 shows the realization of two particular
metrics on a 2-dimensional grid of neurons. The ||.||1- and ||.||co-metric can
be realized, however not the (Euclidean) ||.||2-metric.

The intuitive notion of the output spaces being e.g. one-, two- or higher-
dimensional grids (particularly rectangular ones) is widely used in the litera-
ture (e.g. (Ritter et al. 1994)). Since our investigations will also consider more
general metric structures of A, it is sometimes advantageous to cast this some-
how vague notion into a more precise definition (Polani 1995, 1996). Here,
when talking about the dimension of a grid, we will appeal to the reader’s
intuition.

2.4 Requirements for an Organization Measure

Due to the lack of a canonical notion or measure of SOM organization, there
is a considerable amount of arbitrariness, i.e. of “degrees of freedom”, for its
choice. It will be therefore necessary to clarify the requirements that should
qualify a notion of SOM organization. Let W4 v = W be the set of maps

! If the metrics is non-Euclidean, “pathological” cases can occur where the sets of
ambiguous inputs need not be Lebesgue null sets (Polani 1996).
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[|-]|1-metric [|-||co-metric

Fig. 1. Realization of different 2-dimensional metric structures by Kohonen graphs.
The dashed regions indicate the “unit circles” of the corresponding metrics.

with output space A and input space V. We wish to state informally two
properties which would qualify a function

p:Wav =+ R
to be called an organization measure:

1. It should quantify the process of self-organization during training, i.e. its
value should increase (or decrease) monotonously on average.

2. It should measure the quality of the embedding of A into the data mani-
fold, i.e. the embedding shown in Fig. 2(a) should obtain a “better” value
than, say, the embedding shown in Fig. 2(b).

+

(a) (b)

Fig. 2. Kohonen maps with different embedding quality

The first condition is of interest for mathematical analysis and for the
understanding of the organization process. The second one is important for
applications which have to estimate the quality of the description of a high-
dimensional data manifold by the SOM.
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However, an organization measure need not fulfil both properties. Indeed,
it is not even clear that a measure g fulfilling but the first condition could be
found. The second property is not a hard constraint as the first, as different
measures will most probably yield different estimations for ambiguous cases
of embeddings (e.g. when the data manifold consists of several components
of different dimension).

Since the first property can be cast into precise form in a fairly straight-
forward way, one would choose as first candidates for a discussion as organi-
zation measures such p having this property. We can demand a weaker and
a stronger version of property 1. The weaker version would only require p to
be a Liapunov-function, i.e. that the p-measure would decrease on average
during the training, or formally

E(u(w(t+1))) < p(w(t))

for all w(t) € W, t € N, E denoting the average over a random training
signal.

Organization measures can express a deviation, i.e. their value drops when
organization becomes better during training or their value may grow during
the self-organization process. Yet other sorts of information can be obtained
by an organization measure (see Sec. 3.6).

3 Measures of Organization

3.1 Inversion measures

For the case of a one-dimensional net with A = {1...n} and V a subinterval
of R a Liapunov-function can be given. Following (Cottrell and Fort 1987;
Cottrell et al. 1994) and (Kohonen 1989) an organization measure y; can be
chosen as the number of inversions, i.e. as

Loy (W) :‘ {z €e{2...n—-1} | sgn(wip1 — w;) # sgn(w; — wi,l)} ‘ .

In other words, p,, counts the times change of directions takes place while
4 runs from 1 to n. The convergence theorems in above references guarantee
that py,, thus defined possesses property 1.

As the restriction to dimension 1 is not sufficient for applications, a gener-
alization of this measure to a measure puzp on Wy, for open convex subsets
V C R", n > 1 has been formulated in (Zrehen and Blayo 1992). It is given
by

1
= 175 T 7x o\ D " ] )
MZB(W) |CK| (N =2) (i7ﬁ266K (Z .7)

where Ck is the set of adjacency pairs (¢,5) € AX A in the Kohonen graph and
D(i, j) is the number of receptive fields of neurons k # i, j intersecting with
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the line from w; to w;. The factor 1/|Ck| - (N — 2) normalizes the measure
according to the number of possible connections and disturbances.

However, there is no monotonicity theorem guaranteeing a decrease (on
average) for uzp. Therefore it is not clear, whether it can be considered as a
Liapunov function for the SOM.

3.2 Entropy

In (Linsker 1988) the information transmission from input to output has been
studied for a specialized class of feed-forward neural networks. The investiga-
tions showed that under certain conditions the learning process of those net-
works can be observed to express a maximization of information preservation
in the data transmission from the input to the output neurons. This suggests
using an information-theoretic principle for the design of networks, Linsker’s
infomax principle and its variants (Haykin 1999). Neural network architec-
tures are not necessarily explicitly designed to obey the infomax principle,
but having a look at their information preservation capabilities may promise
to yield a better understanding of their information processing properties.

The activation process of a SOM can be considered as a transmission
mechanism for information which transfers signals hitting the input space V
into signals in the output space A (Hulle 2000). For this information transfer
process different kinds of entropies can be calculated; here we concentrate on
the neuron activation entropy or simply neuron entropy.

The neuron entropy attains its maximum when probability of activation
is the same for all neurons, i.e. when when all receptive fields have the same
probability to be hit under the distribution P. Maximal entropy signifies
that the quantization of the input space takes place in a best possible way; of
course only the quantization class is then specified as precise as possible with
the neurons available and not the position of the incoming signal. The simple
neuron entropy does not know anything about the geometrical properties of
the embedding of w in the input space. What neuron entropy can tell us is
of purely information-theoretical nature. As long as the receptive fields have
the same probability to be activated it does not play a role whether they
might be long and narrow, thus leading to a high quantization error ug or
close to ideal sphere packing for equidistributed input signals.

Let an input signal distribution be given. If the probability that a neuron
1 is activated by an input signal is given by p;, the neuron activation entropy
is given by

—> pilogp;
icA

The entropy can be seen as that amount of Shannon information that is
conveyed by the mapping. Here the activations of the individual neurons are
elementary. In that view, the individual activations cannot be compared to
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Fig. 3. 9 (¢)

each other since it does not assume any semantics structure on the set of
transmitted events, and thus also no similarity. In particular, the entropy
needs not at all be related to topology preservation.

3.3 Energy Function Measures

It would be desirable to have an organization measure with stronger proper-
ties than are required for a Liapunov-function (Wiskott and Sejnowski 1997;
Heskes 1999). Such a measure could be obtained by using an energy function
for the training rule.

Definition 2 (Energy Function). Let (T(e)), cpo,1] Pe collection of learn-

ing rules with
wi(t+1) = [T(e)(z,w)]: ,

for i € A and where € is the learning rate. Assuming fixed x € V and w € W,
then 1, (€) := T'(¢)(x, w) is a differentiable curve in € with 1, (0) = w, which
allows us to define

r(w) = 2 (0),

which is a vector in the tangent space Tw)V of W in w (see Fig. 3 and also
(Abraham et al. 1983; Forster 1984)).

Since 7, is defined for every w € W, 7, defines a vector field on W. A
differentiable function U, : W — R is called energy or potential function for
the learning rule T if
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where 72 denotes the adjoint 1-form to the vector field 7, via the canonical
metric? on W (notation from (Abraham et al. 1983)). If x is a random variable
then

7:=E(7,)

defines a vector field on W (E denoting the expectation value w.r.t. the
distribution of ). In analogy to above a function U : W — R is called energy
function for 7 if dU = 7”.

In certain cases it is possible to specify an energy function explicitly.

Energy Function for Training Signal with Discrete Support. If the

training signal is concentrated on a set {Z1,...,#,} which are assumed to
have probabilities pi,...,pq, the function
1 .. N
Ulw) = 5 SN RGE) D prdv(Er,wi)? (2)

is an energy function for the learning rule (Ritter et al. 1994).

Energy Function for 0-Neighbour Case (Quantization Error) For a
SOM with A = {1,...,n}, h(i,j) = di; (6;; denoting the Kronecker delta)
and a training signal with probability density p a potential function is given
by

Uw) =3 /V dy (wi, o)? p(z)dz (Cottrell et al. 1994).  (3)

This is identical to the squared mean quantization error.

The mean quantization error does not contain any information about
topology. However, a connection between the quantization error and the or-
ganization of the SOM can be made. Luttrell (1989) shows that by minimiz-
ing the quantization error and assuming a suitable error model on the output
space, one arrives at a learning rule similar to the SOM. Furthermore, (Rit-
ter et al. 1994) show that a neighborhood improves convergence. This also
is observed for other topographic mapping models (Hulle 2000). In (Polani
1996), it is shown that to enhance a fast improvement of the quantization
error, a Genetic Algorithm optimization creates a neighborhood, but this
neighborhood needs not be topology preserving (Polani and Uthmann 1992,
1993).

2 Assuming V C R%, W can be identified with a subset of R*” | inheriting the
corresponding metric.
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Nonexistence of Energy Function for the Continuous Case However,
for a case as simple as the SOM with grid dimension 1, the question whether
there exists a potential function for more general h or for a continuous dis-
tribution of z has been answered negatively. Indeed, by use of an elegant
argument, even a stronger result is shown in (Erwin et al. 1992a). As it gives
insight into the complex configurations that can arise in the general case,
we give a reformulation of the argument in the language of differential forms
subsequently yielding a geometric interpretation.

The analysis in (Erwin et al. 1992a) is focused on SOMs with one-dimensional
grid topology, with A = {1,...,n} and V =[0,1]. As training input an i.i.d.
sequence of random variables (z;)¢en is considered, distributed according to
the uniform distribution on [0,1]. Analysis of the vector field 7 discussed
above is restricted to the subset W C W with

W' = {w € Wiw; # w; for i # j},

the complement W\ W' of which is a Lebesgue-null set. To simplify calcula-
tion, 7 is considered only on the subset

W' ={w e W|w; < w; fori < j}

and extended to W' by application of permutations of A, making use of
symmetry properties of W'.

The existence of a function U with dU = 7 requires d7° to vanish, which
does not happen in general. Indeed, even the weaker condition

dr’ AT =0 (4)

(A denoting the wedge product of differential forms) is not fulfilled in general,
as demonstrated in (Erwin et al. 1992a). By the Frobenius theorem (Abraham
et al. 1983), this implies that 7” is not integrable or, equivalently, 7° cannot
be represented as gdU with suitable functions ¢g,U : W — R. Integrability
of the form 7” would have an immediate geometrical interpretation. It would
mean that locally there would exist a system of submanifolds of W', the
tangent bundles of which would be annihilated by 7°. In other words, if M
were such a manifold, 7°(v) would vanish for a vector v from a tangent space
TwM, ie. TwM is perpendicular to 7 (Fig. 4). The importance of the non-
integrability of 7° arises from the fact that this implies the nonexistence of
local “equipotential” submanifolds M (whose tangent spaces Tw M would be
perpendicular to T at every w € M).

Modified SOM Algorithms and Energy Functions There exist further
modifications of the SOM algorithm and similar models that allow the formu-
lation of an exact energy function for the learning algorithm, e.g. (Wiskott
and Sejnowski 1997; Graepel et al. 1997, 1998; Heskes 1999; Hulle 2000).
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TwM

3

Fig. 4. Geometrical interpretation of integrability at point with nonvanishing 7

These cannot be discussed here in detail and we refer the readers to the
original works.

The question may now be why one would bother to study the original
SOM algorithm which poses so much resistance to conventional mathemat-
ical analysis. A reason to do so is that the simplicity of the SOM learning
rule on the one hand and the complexity of its mathematical analysis on
the other hand bring the essential questions of topographic self-organization
to the point. Topographic self-organization is not just about minimizing an
appropriate energy function, even if such energy functions may be devised.
It was probably a piece of luck for research motivation that the original rule
has not been derived from an energy function. Otherwise the fact that the
energy function had be devised to create an organized map would have ob-
scured the fact that topographically organized maps can be created by a
much larger variety of dynamics than are defined by an energy function of a
certain character.

It will be an interesting question for the future to determine how strong
the conditions have to be to guarantee a certain degree of system organization.

3.4 Further Approaches for Dynamics Quantification

Energy and Liapunov functions as discussed above are measures based on the
dynamics of the learning rule and the SOM learning rule may be modified
in such a way that it becomes the gradient of some energy function. How-
ever, one could adopt here another view, namely looking at the SOM purely
from the dynamics system view. One would then like the energy function to
be derived from a given dynamical system and not from additional exter-
nal interpretation of the system as a topology preserving system. Since the
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construction of energy functions is impossible for the general SOM, Spitzner
and Polani (1998) used a different approach to condense the dynamics of a 1-
dimensional SOM into a smaller number of parameters, based on a principle
from synergetics (Haken 1983). It separates the dynamics into fast and slow
subsystems (Mees 1981; Jetschke 1989). Applied to the 1-dimensional SOM,
the method revealed that close to the fixed point of the dynamics a condensa-
tion of the essential dynamics into few relevant degrees of freedom or “order
parameters” was not possible. However, this might be possible if also states
far from the fixed point are taken into account. An indication that this view
could be useful to formulate a quantification of (self-)organization not based
on a topographic interpretation of the map is the hierarchical structure of
the metastable states for the linear SOM (Erwin et al. 1992b). This view will
be an interesting research field for the future.

3.5 Measures of Curvature

n (Alder et al. 1991) a “crinkleness” measure is defined for SOMs. It is
restricted to Kohonen maps with A having rectangular grid topology. For
every “inner” neuron of A (every neuron surrounded by neighbours in every
dimension of A) a local deformation is calculated. The crinkleness measure
then is given by averaging these local deformations.

The Discrete Version The local deformation is calculated in (Alder et al.
1991) as follows: We consider the distortion with respect to the k-th di-

mension of A. If A has n; X ng X -+ X ng X --- x n, grid topology and
i = (i1,---,0k,-.-,%) is an inner neuron (i.e. iy € {2,...,n — 1}), let
it = (i,...,ix £ 1,...,i,), further v = w; —w;- and v,‘c" = Wi+ — Wi

The local deformatlon ¢(7) of neuron 7 is then given by

C(i):_Z( _ Uk’”}g'_))

v | |Uk |

| I

- Z (1 = cos Z(vy ,v}))

k=1

I - cos ), 5)
k=1

where ¢y, is the angle Z(v,, v,j) between v, and v,j. The geometric situation
can be visualized as in Fig. 5.

The average of ¢(i) on all inner neurons of A will be called paTa. As
pATA assumes a rectangular grid as topology of A, it presupposes signifi-
cantly more structure than other organization measures only assuming some
graph structure on A and one could hope to relate this measure to some of
the well known curvature measures of the continuous case. For this purpose



Measures for the Organization of Self-Organizing Maps 15

w(it)

1/0

k-th grid direction W (?,_ )

Fig. 5. Local deformation at a neuron

certain quantities of the discrete case must be converted to quantities of the
continuous model.

To achieve this, define for given 41,...,%%_1,%k+1,-- -, i, the function
s:{l,...,n5} — A
t '_)(ilr":ikfl:t: ik+17"'7i7")'

Then, if i = s(t), obviously

vf = [wosl(t+1) — [wosl(t)
vp = [wosl(t) — [wosl(t—1).

A Continuous Version To obtain the continuous version of the model,
replace A, s and w by appropriate continuous versions of the corresponding
sets and maps, thereby we are able to turn w o s into a smooth function
¢ : [0,1] — V; the small displacement v} becomes ¥(t) in the continuous
version.

Now in the crinkleness measure the change of displacement vectors is mea-
sured in terms of 1 — cos ¢. To make the connection between the continuous
and the discrete model and to obtain the differential analogy for 1 — cos ¢,
we consider Z(1(t),4)(t + At)) instead of ¢, and investigate the Taylor ex-
pansion of 1—cos Z(¢(t), ¥ (t + At)) with respect to At around ¢. A somehow
tedious calculation shows that the first non-vanishing coefficient of the ex-
pansion is that of At?, i.e. the 2nd derivative of 1 — cos Z(¢(t),(t + At))
with respect to At at At = 0 can be considered as the continuous version of
the crinkleness at 1(t). It is given by

(W), DN (1), (1)) — ((E), D (1)

(W (1), 9(2))? ©

c(¥(t) =
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Because of the Cauchy-Schwarz-inequality this term is always > 0 (as is
its discrete counterpart) and vanishes (this means local crinkleness 0) exactly
when )(t) is parallel (or antiparallel) to ¢ (t), which means that change of the
tangent takes only place in direction parallel (antiparallel) to the tangent.

In exactly this case ¢(¢(t)) is minimal. Note that in this respect the
continuous model differs from the discrete one, since in the latter v, may be
antiparallel to v}, yielding a maximal crinkleness value, but in the continuous
(smooth) case this cannot happen, since tangent vectors for ¢ and ¢ + At are
always close for small At.

This can be reformulated for a general non-vanishing vector field Z on
the curve ¢ (O’Neill 1983):

(Z,Z)(DzZ,DzZ) —{Z,DzZ)*
Y(t) = 5 ) 7
() iS4 » ©

where D denotes the canonical connection on V. Thus the differential geo-
metric version of the crinkleness measure pata at location w; = w(i) € V is
obtained by assuming A and V' to be smooth manifolds of dimensions r and
d, respectively, the latter furnished with a scalar product; then a collection
{E;|j =1...r} of vector fields on A is chosen forming a basis (orthonormal,
if A is equipped with a scalar product) and setting:

c(w(i)) = _Z cj(Dw;i(Ejy)) (8)

Dw; denoting the Jacobian of w at ¢ € A in this context. The global crinkle-
ness measure is then obtained by averaging over A, i.e. by integrating over A
and normalizing afterwards.

Unfortunately this measure is not invariant with respect to the choice of
the basis {Ej|j = 1...n} (even when restricted to orthonormal ones), as can
be shown by a straightforward example. Therefore it cannot be expressed
as an abstract property of the embedding of a smooth manifold A into the
smooth manifold V. This means that in the transition from the discrete to
the smooth model, i.e. from the grid to the manifold the “special” character
of certain selected directions of A is not lost. One would, however, prefer
a measure taking advantage of the local isotropy of the smooth model and
being insensible to the choice of a basis.

Possible Generalizations Through these considerations one is led to con-
sider the possible derivation of a whole collection of crinkleness or — better
— curvature measures for application to discrete SOMs from the well-known
curvature notions of Riemannian geometry. One may apply the distinction
between intrinsic curvature quantities measuring the “inner” distortion of the
Kohonen embedding and quantities measuring the distortion of w(A) with
respect to V. For w(A) having an “inner” distortion at least two dimensions
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are required, since the intrinsic curvature of a 1-dimensional manifold vani-
shes (O’Neill 1983). However, notions of the relative curvature of a submani-
fold embedded into a manifold also exist. Hence measures might be derived
enabling to focus on different aspects of the embedding quality.

One should nevertheless keep in mind that these characterizations will
be purely geometrical and restricted to evaluate the current map w without
referring to the data manifold it is expected to describe. Thus, one obtains
two possible informations by the measures: On condition that a SOM is an
appropriate model for the given data manifold, the curvature measures give
an information on the geometrical structure of the data manifold. In this
case, large curvature values will have to be traced back to the form of the
data manifold. But much more often large curvatures will be result of the
well-known crinkling effects of nets where dimension of A is inappropriately
chosen (as e.g. in Fig. 2(b)).

3.6 Similarity- and Metric-Based Measures

Goodhill et al. (1995); Goodhill and Sejnowski (1997a) discuss measures that
are based essentially on notions of similarity. A measure of similarity can
be realized by a metric, but need not fulfil the triangle inequality. In the
mentioned papers, the similarity measures are realized as either a (often
Euclidean) metric or as some monotonous functions applied to a metric De-
pending on the orientation of the similarity value, a good match is reflected
by a low or a high value.

We cite a proposition from (Goodhill et al. 1995) that is useful for gener-
alizing the notion of a topological homeomorphism to discrete spaces based
on similarity measures. First, we first require a definition.

Definition 3. Given metric spaces (X,dx) and (Y,dy),amap M : X - Y
is called similarity preserving if

Va1, Ts,23,24 € X : dx(21,22) < dx(x3,24) =

dy (M(21), M(22)) < dy (M (za), (1)) ®)

Proposition 1. Let (X,dx) and (Y,dy) be identical metric spaces with coun-
table dense subsets. If M is a bijection such that both M and M~ are sim-
ilarity preserving, then M is a (topographic) homeomorphism and X andY
are topologically equivalent via M.

The similarity preservation condition is, as noted by Goodhill et al. (1995),
stronger than required to guarantee homeomorphism, therefore the stronger
notion of topographic homeomorphism is used. A naive definition of topology
in discrete spaces is unsatisfactory because the discrete topology is trivial and
makes all mappings continuous. The conditions of Proposition 1, however,
make sense for discrete spaces, too, and can be used to define a nontrivial
notion of topography preservation for mappings between discrete spaces.
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A Measure for Topographic Homeomorphism In the following, we use
our standard notation for input and output space also for the scenarios of
Goodhill et al. Given a measure of similarity Fy on the input space and Fg
on the output space, Goodhill et al. (1995); Goodhill and Sejnowski (1997a,b)
define a measure C by?

C= Y Fali,)Fv(wi,w;). (10)
(4,5)EAXA

i#]
Goodhill et al. (1995) show that minimizing C' w.r.t. w yields a topographic
homomorphism if it exists. They also point out that the measure C is re-
lated to quadratic assignment problems. Some special cases of the measure
C are discussed in (Goodhill and Sejnowski 1997a). A measure very similar
to the inverted minimal distortion introduced there has already been used in

(McInerney and Dhawan 1994).
Further measures of map quality studied in (Goodhill and Sejnowski

1997a) are

Metric Multidimensional Scaling: introduced in (Torgerson 1952), given
by

37 (dali,g) — dy(wi,w)))?, (11)
(i,j)EAX A
i#J

a low value denoting a good match;
Sammon measure: (Sammon 1969) a measure treating input and output
space unsymmetrically via

1 (da(i, j) — dv(wi, w;))’
Z da(i, §) (i,j)EAXA da(i, 4)

(i.)EAxX A i#j
i#j

(12)

a low value denoting a good match;

Spearman coefficient: (Bezdek and Pal 1995), based on an order statistics
(and not the numerical values) of the similarity values for the different
(¢,7) pairs. Let Ry and Sy enumerate the respective ranks of the values
da(i, j) and dy (w;, w;) for all the pairs (i, j) € AxA. Then the Spearman
coefficient of this order statistics is given by

> (Re = B)(Se = 5)
VB~ B /S4 (56 - B)

3 The notation used here differs slightly from that of the original papers, but is
— apart from a constant factor 2 — essentially equivalent to that given there,
assuming that the similarity measures are symmetrical in their arguments.

(13)
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its value lies between 0 and 1, a high value denoting a good quality
mapping. Its one of the measures mentioned in Sec. 2.1 that uses only
the ranking information from the metrics of the spaces.

The Topographic Product The topographic product is a measure moti-
vated by the study of dynamical systems that has been modified for use with
SOMs.

The topographic product upp as defined in (Bauer and Pawelzik 1992) is
calculated as follows:

e Tor all j € A determine n{'(j),n3'(j),...,na_,(j) € A such that
da(G,ni' () < da(isng (7)) < -+ < da(,ny ()
and n{ (j),nY (4),...,nk_,(j) € A such that
dv(Wj, Wy ) < dv(Wj, Way ) < <dv(wWy, Wy () -
e For j, k € A set

dy (Wj, Wpa ;)

k) =
Ql (.7 ) dV (Wj , WnkV (]))
and
. da(j,ng ()
,k = -
Q204 k) da(j,n) (j)
e Set

=1

k 1/2k
Py(j, k) := (H Q1(5,D)Q2(j; l)) :

e The final measure is then given by the logarithmic average:

N N-1

UBP = m Z Z log (P3(j, k)) -

j=1 k=1

A value near 0 signifies good adaptation, negative values of ugp are ex-
pected to indicate folding of A into V' (Bauer and Pawelzik 1992) (typically
when “dimension” of A — considered as grid — is chosen too small), positive
values are expected to indicate a topology mismatch in the other direction.

In the first step, the choice of n{'(j),ns'(j),...,na_,(j) need not be
unique, when there are different pairings of neurons, such that e.g. d4(j, k) =
da(j, k') with k # k'. No standard procedure is given in (Bauer and Pawelzik
1992) to resolve this ambiguity. Therefore different implementations of the
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Fig.6. A VBAR quadrilateral defined by four neurons in two-dimensional space

measure may yield different values for the intermediate values ()1 and Qs,
while — empirically — the global result seems to be largely independent of
these details®.

3.7 A “Topological” Learning Rule

With (Hulle and Martinez 1993) and (Van Hulle 1997), the topological learn-
ing rules BAR and VBAR are introduced. They carry both the structural
advantage of achieving or approximating an equiprobabilistic representation
of the data manifold, thus maximizing entropy and, even more, being, in a
sense, true topological learning rules.

The VBAR algorithm Here we give a short sketch of VBAR and refer the
reader to (Hulle 1997, 2000) for more details. In VBAR, the output space is
considered a rectangular grid of some given dimension d. Similar to the SOM,
a neuron ¢ has a corresponding “weight” vector w; in the input space. Unlike
in the SOM, however, the neurons do not just denote individual points to be
mapped to the input space, but define the corners, and thus the borders of
quadrilaterals Hy (d-dimensional rectangular intervals). Fig. 6 shows this for
d=2.

4 The author’s implementation of gpp has been compared to the implementation
from (Speckmann et al. 1994).



Measures for the Organization of Self-Organizing Maps 21

In VBAR, an input signal is not considered to activate an individual neu-
ron, but a complete quadrilateral. Exactly the neurons defining the corners
of the respective quadrilateral will be updated. Let I define the image of a
quadrilateral (multidimensional interval) under w in input space (Fig. 6). Let
x1 be the characteristic function of the set I, i.e.

1 ifxel
xr(z) = (14)
0 else.

for all z € V. For each neuron i € A, let S; be the set of those quadrilaterals
that have 7 as corner. Then the VBAR learning rule is given by

Awi(t):==n Y xi(e)sgn(z — wi(t)) (15)
Tew(S;)

for every neuron i, where x € V is the current input, w(S;) denotes the
image of the quadrilateral set S; under w, i.e. the set of quadrilateral images
under w, 7 is the learning rate and sgn operates component-wise. For further
details and the activation of quadrilaterals when z outside the grid map, see
e.g. (Hulle 2000). For the VBAR algorithm, the notion of topographic order
is well-defined.

Definition 4. A VBAR mapping is topographically ordered if for all inputs
z € V the condition

ZXI(m) =1 (16)
T

holds where the sum is over all quadrilaterals I.

Condition (16) guarantees that, for a topologically ordered VBAR map,
all points in V' are covered by exactly one quadrilateral image w(I). For a
point z that would not be covered, the term in (16) would become 0. A point
x that would be covered multiply would return a number larger than 1. Thus,
an organization measure could be defined based on the deviation of the term
from (16) from unity for a given distribution of inputs z.

In addition to that, the VBAR rule also guarantees that, on convergence,
the probability of activation of quadrilaterals is equidistributed, maximizing
the entropy of the activation. Thus, in this context, the entropy could be used
as (indirect) indicator of organization.

A “Topological” View of VBAR There is one property that makes the
VBAR algorithm particularly interesting from the viewpoint of a topological
mapping. As becomes clear throughout the present review, most measures
of organization of topographic mappings are, in fact, not pure topological
quantities. Most of them require a metric or at least a similarity structure on
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the input and output spaces. This is a stronger structural requirement than
topology preservation (Sec. 3.6).

Even the predicate notion of Delaunay-topology preservation as in (Vill-
mann et al. 1997) (see Sec. 3.8) requires a metric structure on the spaces, in
particular a metric on V' to construct the Delaunay graph, and two different
metrics on A, depending on whether one considers the topology preservation
of w or of its left inverse i*.

Here, this review wishes to direct the attention to a property particular
to the VBAR model and the models directly related to it which, as far as
known to the author, has not been pointed out before. Namely, the fact that
the output space used in VBAR can be seen as a special case of using the
topological notion of a complez (see e.g. (Henle 1979) or any other standard
reference on algebraic topology). This review cannot give a full technical
definition of a complex and only outlines it to make its point.

In algebraic topology, important notions are based on the study of d-
dimensional simplices. For those, the notion of orientation and of boundary
is defined. A d-dimensional complex is a structure that is constructed from
d-dimensional simplices by topological identification (gluing together) of sim-
plex boundaries. One of the simplest examples for a complex is a graph. It
is constructed by 1-dimensional simplices (its edges), the boundaries of the
edges are the vertices. An orientation is given by directing the edges. Higher-
dimensional complexes can be seen as a generalization of that view by not
only gluing edges together, but polygons, polyhedra and hyperpolyhedra to
obtain the relevant structures.

The quadrangles used in VBAR can be constructed from simplices. They
carry the full topological information about the structure of the output space,
since they are truly d-dimensional, unlike the approaches restricted to graph
or metric constructions to model higher dimensional spaces. It is therefore
quite satisfying to see that in this model the topology preservation notion
is simple to formulate. The VBAR model and its siblings can be seen as
natural generalization of the discrete graph models of output space. It will
be interesting to explore this type of generalization in the future.

3.8 Data-Oriented Measures

Intrinsic Distance Measure Kaski and Lagus (1996) introduce as measure
the shortest mapped distance between the neurons whose weights are closest
and second closest to a given data point in input space. More formally, let
z € V be an input vector, i*(z) be the neuron closest and j*(z) the neuron
second closest to the input (for simplicity, we assume uniqueness). Be further
S;»j+ the set of paths starting at i*(z) and ending at j*(z) with edges from
the Kohonen graph Ck. Then define the intrinsic distance as

d(@) := dy (2, Wie@) + min Y dv(We,Way,),  (17)
(skssk41)€ES
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where the paths S € S;»j+ are represented as set of edges (s, sg+1)- The mea-
sure is then given by the expectation value E(ci(x)) of the intrinsic distance
w.r.t. the data distribution.

i*(z) and j*(x) can be regarded as neurons that represent a given data
point x € V “similarly” well in input space. In output space, however, they
need not be close-by. One could have therefore taken the distance between
i*(z) and j*(x) in output space as measure. Instead, in the approach chosen
by Kaski and Lagus, the paths are projected back into input space. This
can be interpreted as weighting the distance between both “representants”
according to how large a region in data (input) space is in fact covered by the
SOM. Thus, even if i*(z) and j*(z) seem far away in output space, they can
still be close by in input space. The authors report the method to be more
robust than that from (Villmann et al. 1994a). At the present time, a direct
comparison of the measure to further organization measures is still an open
task.

Measures Based on Delaunay Graphs The measure described in this
section is based on the Delaunay triangulation of the set

{wili € A} = w(A) (18)

induced by the signal probability distribution on V. The mechanism applied
is a Hebbian one as it is based on the simultaneous activation of neurons.
The particular algorithm that enables determination not only of the Delaunay
triangulation, but also of the structure of 2nd order Voronoi cells of w(A)
has been introduced in (Martinetz and Schulten 1993) and we will refer to it
as the Hebb-Martinetz-Schulten- or HMS-algorithm?®.

A whole class of measures can be defined by making use of such a mech-
anism, which we will therefore call Hebbian measures. It is applied by con-
struction of graphs as discrete models of data manifolds.

Voronoi Tessellation and Delaunay Triangulation Before we turn to
the construction of the 2nd Voronoi triangulation by the Hebb algorithm
of Martinetz and Schulten, we will redefine the notions of Voronoi cells and
tessellations (consistently with Sec. 2.2) as well as the Delaunay triangulation.

Definition 5 (Voronoi Cell). Consider a SOM w. The Voronoi cell (also
1st order Voronoi cell) of a neuron ¢ € A or the weight w; € w(A) is the set

Vi = {.’L‘ S V|Vk € A: dv(.r,Wi) < dv(m,Wk)} .

 We use this term also to distinguish it from the full Self-Organizing Discrete
Manifold algorithm presented in (Martinetz and Schulten 1993), since the latter
also involves a process distributing the w;, whereas in for our purposes it is
applied to a given fixed w.
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The 2nd order Voronoi cell of neurons ¢ and j is the set
Vij = {r e VIVE € A\ {3,j} : dv(z,w;) < dy(z, W) A dv(.’L',Wj) <dy(z,wg)}.

Definition 6 (Voronoi Tessellation). Given a SOM w, its Voronoi tes-
sellation is the set

{Vili € A}
of Voronoi cells V;.

Definition 7 (Delaunay Triangulation, Hebb Graph). The Delaunay
triangulation or Delaunay graph of a SOM w is a graph with vertex set A,
i and j being adjacent iff V is an open subset of R? and V; and Vj have a
common d — 1-dimensional section. If ¢ and j are adjacent for V; N Vj # 0,
we speak of a pseudo-Delaunay graph.

The weighted Delaunay or Hebb graph of w induced by a probability
distribution P (on V') is obtained by furnishing the edges (, j) of the (simple)
Delaunay graph with the weights P(V;;), where P(V;;) is the probability that
an input signal lies in the 2nd order Voronoi cell Vj;. The edges of the Hebb
graph are also called Hebb connections.

If V is a subset of R?, dy being the Euclidean metric, then the Delaunay
triangulation defines a triangulation of the space in the usual sense, except
for degenerate choices of w (see (Okabe et al. 1992)).

The following general assumption will put us in the position to ignore
pathological effects occurring at the boundaries of the Voronoi cells: From
now on we will assume that P(V; NV;) and P(V;; N Vyr ;) always vanish for
1 #1', j # j', P being the probability distribution of input signals on V.

This assumption holds automatically if P has a density and dy is the
Euclidean metric e.g. on a subset of R?. However, it is not true in general if
one of these conditions does not hold (Polani 1996). Our assumption ensures
that we need not take such pathologies into consideration.

The Hebb Algorithm for the Self-Organizing Map The algorithm
from (Martinetz and Schulten 1993, 1994) is recapitulated in the following.
Note that the original algorithm has been modified insofar as to count the
signals activating a connection and thus include a weight information about
the Hebb connections. Let a SOM w be given. Then the HMS-algorithm is
given by:

e For every adjacency pair (i,j) € Ck C A x A let the connection strength
be Cij = 0.

e Choose randomly a finite set S := {z; ...z,} of Hebb signals z; ...z, € V
according to the probability distribution P.

e For every Hebb signal ; € S:
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— Determine a neuron i* € A minimizing dy (z;, w;«)
(a “best matching” neuron, typically i*(z;)).

— Determine a neuron j* € A\ {i*} minimizing dy (2;, w;+)
(a “second best matching” neuron).

— Increment the connection strength c¢;+;+ by 1.

If ¢;;-values have been obtained by the above Hebb algorithm, ¢;;/¢ then
provide estimates for the P(V;;)-values and hence for the weights of the Hebb
graph of w induced by P. The larger ¢ and hence the set S is chosen, the
better the estimate. At this stage there are several possibilities to calculate a
quality measure for the Kohonen graph from the c;;-values. Since they share
the same vertex set A, the Kohonen graph can be compared directly to the
Hebb graph. The Hebb measure py, to be defined in Section 3.8, will be
based on such a comparison. Villmann et al. also make use of the original
(nonweighted) HMS-algorithm to calculate their organization measure.

A notion of Topology Preservation based on Delaunay triangulation
Villmann et al. (1997) introduce a notion of topology preservation from the
graph structure on A and the neighborhood structure of the Voronoi cells in
V. Based on the notion of the pseudo-Delaunay graph, a notion of topology
preservation has been defined by Villmann et al.. To distinguish it from other
definitions, we call it Delaunay-topology preservation.

Definition 8 (Delaunay-topology preservation). Assume A is a rectan-
gular lattice embedded into R%. Let dY| represent the ||.||; and d%° represent
the ||.||co norm (Sec. 2.3) on A. The map w is then called Delaunay topology-
preserving iff i,j € A adjacent w.r.t. dy (i.e., for which dY(i,j) = 1) are also
adjacent as vertices of the pseudo-Delaunay graph and i* is called Delaunay
topology-preserving iff i,5 € A adjacent as vertices of the pseudo-Delaunay
graph are also adjacent w.r.t. d%, i.e. d¥(¢,5) = 1.

Until now, the definition brought forward does not incorporate the struc-
ture of the data. However, the authors point out that it is essential to incor-
porate the structure of the data manifold, i.e. the support of the probability
distribution in the calculation of the measures to obtain a quantity that ade-
quately describes the quality of the mapping (this point has also been empha-
sized e.g. in (Kaski and Lagus 1996; Polani 1996)). In their model, Villmann
et al. solve this problem by operating on an induced or masked Delaunay
graph that depends on the data manifold. If M is the data manifold, the
masked Voronoi cells are defined by V; = V; N M, where V; are the standard
Voronoi cells. The masked Delaunay graph is constructed from the masked
Voronoi cells V; analogously to the nonmasked version by defining two neu-
rons i and j as adjacent in the masked Delaunay graph iff V; N Vj # 0. The
notion of topology preservation resulting from the masked Delaunay graph is
the original version of the notion introduced in their paper.
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Topographic Function In the categories from Sec. 2.1, the notion of De-
launay topology-preservation from Def. 8 acts as a predicate by determining
whether or whether not a mapping is topology preserving. As is the case
for many measures described here, e.g. for the “similarity match” measure
C from Sec. 3.6, when the predicate is not fulfilled, one would like quantify
the degree to which the observed map does not comply with the predicate.
Instead of restricting to a single numerical value, Villmann et al. (1997) in-
troduce a function that quantifies the structure of the mismatch.

Definition 9 (Topographic Function). Denote the metric defined by the
masked Delaunay graph by dp. Define for all i € A, k € Z \ {0} the functions
fi :Z\ {0} = N by:
i | dp(i,7) =1,d%(i,7) > |k for k>0
{j 1 da(i,4) =1,dp(i,5) > [k|}| for k<O0.

It gives the distribution of mismatches of a size beyond k for w and its left
inverse i*. For k > 0, f; gives the number of mismatches for the map i*
from V to A, for k < 0 the mismatches for the map w from A to V. Note
that analogously to the definition of the topology preservation the required
variant of d 4 depends on which direction is considered, whether i* or w. The
topographic function is then given by

1

— jk‘ for k 0

|A|;f() or k # 0)
&(1) +H(-1) for k=0,

&(k) :==

i.e. for k # 0 it is the value of the f; averaged over all neurons.

The topographic function contains more information about the type of
mismatch than the measures giving only a single number. First, it gives a
direction of mismatch. If (k) > 0 for positive k, then this means that two
neurons whose weights are close together in V' (who are connected by a
Delaunay edge) have a larger distance in A, i.e. that i* is not Delaunay
topology-preserving. This is typically the case if A has a too low dimension
to accurately map V, as in Fig. 2. The largest ¥ with nonzero (k) indicates
the scale size of the deviations. If k is large, then this indicates a deviation
up to large size scales. Analogous statements hold for k£ < 0, where &(k) > 0
indicates that w is not Delaunay topology-preserving and that the dimension
of A is too high.

Note that to calculate the masked Delaunay graph to determine the to-
pographic function in a concrete case, the authors use the original HMS-
algorithm where it is only determined whether P(V;;) # 0, i.e. whether the
¢ij determined by the HMS-algorithm from Sec. 3.8 does not vanish.
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A Hebbian Measure In (Bohme 1994; Polani 1996, 1997b,a), another mea-
sure is introduced and discussed that uses the HMS-principle to determine
the Hebb (weighted Delaunay) graph with which the Kohonen graph may
be compared. A comparison could be done by directly comparing the edges,
e.g. counting the spare Kohonen edges (those Kohonen edges having no cor-
responding one in the Hebb graph) and vice versa. This would ignore the
weights of the Hebb edges. However, such an indiscriminate comparison of
the edges leads to sensitive discontinuities which are undesirable (Bohme
1994). This is illustrated by the standard example of a SOM with square net
topology trained by an equidistribution on [0, 1]> whose weights and receptive
fields are shown in Fig. 7.

Fig. 7. Receptive fields of a SOM with square net topology, V = [0,1]> and P an
equidistribution on V' (Kohonen connections are not drawn).

Note that since P is an equidistribution in our example, P(V;;) is given
by the 2-dimensional volume of the 2nd order Voronoi cells V;;; this volume
in turn is nonzero only when the 1st order Voronoi cells V; and V; have a
common edge (just fulfilling V; N'V; # 0 is not sufficient). The final state
reached after a training is the average equilibrium state, i.e. of a state in
which the weights w; lie on slightly perturbed grid positions.

By inspection of Fig. 7 one can observe that even slight deviations from
the symmetric equilibrium state of the SOM lead to “diagonal” edges in
the Hebb graph for which no equivalent edges in the Kohonen graph are
present. If comparison of Hebb and Kohonen graph were done ignoring the
Hebb edges’ weights, mismatch of a diagonal edge would be counted with the
same significance as that of a rectangular edge. However, one would like the
rectangular Kohonen still to be characterized as “well organized” when the w;
display some small deviations from the equilibrium grid positions. Moreover,
even small perturbations may flip a diagonal edge (Fig. 8). Therefore even if at
first correct diagonal Kohonen edges matching the Hebb edges were present,
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a small perturbation of w could transform those edges into spare ones, i.e.
the resulting measure counting the matches would not be continuous.
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Fig. 8. Hebb edge flip induced by perturbation of w (deviation from square grid
equilibrium positions is exaggerated for illustration)

Thus the demand for continuity leads us to take into account the weights
of the Hebb edges since the diagonal edges have much smaller weights than
the rectangular ones. A comparison of the graphs can be realized by furnishing
the Kohonen edges with weights. This can be done in different ways, leading
to similar results except for pathological cases. We will follow the conventions
of (Bshme 1994), where the weight ¢;; of a Kohonen graph edge (i,j) € Ck
is set to

> G
Giii= 6= (4,4)ECu
! ICul ~

i.e. to the average weight of the Hebb graph edges for all edges. The measure
is now obtained by summing up the weights of Kohonen edges not matching
any Hebb edges and vice versa and normalizing. Finally, the measure g is
calculated by subtracting the result from 1; a high degree of organization is
therefore represented by a high value of pup(w) since in this case there are
only few non-matching edges. The formula for py(w) reads then®:

)DEEN T D DR

MH(W) =1—= (i,j)ECK\CH (iaj)ECH\CK
> Gt X
(i.4) €Cx (i,j)ECxu
cle\Cal+ X ey
(i,5)€Cu\C
=1 2 21
¢ |C| + E Cij (21)
(LJ)ECH

8 For sake of simplicity in our notation we identify the values of P(V;;) with their
estimates c¢;; obtained by the Hebb algorithm. Note that in those terms q is
cancelled — it only plays a role for the accuracy of the ¢;; as estimates for p;; - q.
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4 Further Reading

This section will give a couple of pointers for further reading. The measures
(Minamimoto et al. 1993) and (Demartines and Hérault 1995) are discussed
in (Bauer et al. 1999). An organization measure related to C from Sec. 3.6 is
introduced and used in (Mehler 1994). Demartines and Blayo (1992) use the
variance of the connection lengths between weights in input space as a type
of organization measure. This quantity is discussed e.g. in (Polani 1997b).
Different types of measures have been compared to each other in (Vill-
mann et al. 1994a,b; Villmann 1996; Villmann et al. 1997; Villmann 1999;
Bauer et al. 1999; Goodhill et al. 1995; Goodhill and Sejnowski 1997a,b;
Polani 1997b, 1995, 1996). The last work, together with (Polani and Uthmann
1992, 1993; Polani 1997a, 1999) study the optimization of SOM topologies
w.r.t. organization measures using GAs; it is found that this type of analysis
can reveal much about the property of a given measure. In particular, for
being able to claim that a given measure detects certain topological defects
or favors a certain type of organization, that type of analysis is very helpful.

5 Summary

The present paper gave an overview over existing approaches to quantify the
organization of SOMs and related topographic mapping models. The organi-
zation measures were discussed according to conceptual, structural and dy-
namical properties. In particular, the necessary properties relevant for the def-
inition of organization measures were discussed. The overview shows clearly
that organization measures can be defined from many conceptually different
points of view, like information-theory, dynamical systems, topology, sim-
ilarity, metrics or curvature. It also shows that the study of organization
measures is generally regarded as central for the understanding of SOMs.
And perhaps, in future, the study of this paradigmatic system will help to
better understand the phenomena of self-organization in general.
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