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Abstract

We study the evolution of asexual microorganisms with small mutation rate in fluc-
tuating environments, and develop techniques that allow us to expand the formal
solution of the evolution equations to first order in the mutation rate. Our method
can be applied to both discrete time and continuous time systems. While the be-
havior of continuous time systems is dominated by the average fitness landscape
for small mutation rates, in discrete time systems it is instead the geometric mean
fitness that determines the system’s properties. In both cases, we find that in sit-
uations in which the arithmetic (resp. geometric) mean of the fitness landscape is
degenerate, regions in which the fitness fluctuates around the mean value present a
selective advantage over regions in which the fitness stays at the mean. This effect
is caused by the vanishing genetic diffusion at low mutation rates. In the absence of
strong diffusion, a population can stay close to a fluctuating peak when the peak’s
height is below average, and take advantage of the peak when its height is above
average.
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1 Introduction

A major part of all living creatures on Earth consists of prokaryotes and
phages. These organisms replicate mainly without sexual recombination [1],
and typically produce offspring on a time-scale of hours. Because of their short
gestation times, microbes experience ubiquitous environmental changes such
as seasons on an evolutionary time scale. Most of the DNA based microbes
have developed error correction mechanisms, such limiting the amount of dele-
terious mutations they experience. In a changing environment, however, small
mutation rates might severely curtail a species’ ability to react to new sit-
uations. The observed genomic mutation rates of asexual organisms such as
bacteria and DNA viruses lie typically around 2 —4 x 1073 [2], implying that a
few out of every thousand offspring get mutated at all. It has been proposed [3]
that even lower genomic mutation rates are not observed simply because they
would stifle a species’ adaptability in a changing environment. While this is
certainly a reasonable assumption, we do not currently have a deep under-
standing of what types of fitness landscapes require what mutation rates, and
whether a small mutation rate is always disadvantageous in a changing envi-
ronment. In this paper, we address the effects of a changing environment on
a population evolving in a small mutation rate. Our main objective is to de-
velop an expansion to first order in the mutation rate which enables us to find
approximate solutions for infinite asexual populations evolving in arbitrary
dynamic landscapes.

Due to the nature of the expansions that we use, we are led to a comparison
between discrete time and continuous time systems. Our main result from
the comparison is that in dynamic fitness landscapes, continuous and discrete
time systems have qualitative differences in the low mutation rate regime.
This difference can manifest itself, for example, in populations that replicate
either continuously or synchronized in discrete generations. Given that all
other factors are equal, the continuously replicating strains will have a selective
advantage. As a generic result for both continuous and discrete time, we find
that a low mutation rate can enable a population to draw a selective advantage
from fluctuations in the landscape.

Our analysis is based on the quasispecies model [4-6]. The quasispecies lit-
erature was for a long time focused on static fitness landscapes, but recently
more emphasis has been put on the aspect of changing environments [3,7-14].
Here, we mainly use methods developed in Ref. [12]. The paper is structured
as follows. In Sec. 2, we demonstrate how systems with discrete as well as con-
tinuous time can be treated to first order in the mutation rate. In Sec. 3, we
discuss the expansions we have found in Sec. 2. We treat the case of a vanish-
ing mutation rate in Sec. 3.1, and that of a very small but positive mutation
rate in Sec. 3.2. In Sec. 3.3, we study the localization of a population around a



oscillating peak, and in Sec. 3.4, we discuss the problems we encounter when
approximating a continuous time system with a discrete time system. We close
our paper with concluding remarks in Sec. 4.

2 Analysis
2.1 The model

Consider a system of evolving bitstrings. The different bitstrings i replicate
with rates A;, and they mutate into each other with probabilities );;. Through-
out this paper, we assume that the probability of an incorrectly copied bit is
uniform over all strings, and denote this probability by R. The mutation ma-
trix Q = (Qi;) is then given by
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where d(i,7) is the Hamming distance between two sequences i and j. The
matrix Q is a 2! x 2/ matrix, and it is in general difficult to handle numeri-
cally. Therefore, in the following we impose the additional assumption that all
sequences with equal Hamming distance from a given reference sequence have
the same fitness. This is the so-called error class assumption [15]. The matrix
Q is then an (I 4+ 1) x (I 4+ 1) matrix,
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The generality of our results is not affected by this choice, because the calcu-
lations we present in the following can be performed with either of the two
matrices Q, and they lead to very similar expressions.

Let us write down the quasispecies equations for sequences evolving in con-
tinuous or discrete time and in a static fitness landscape. We introduce the
replication matrix A = diag(Ag, A1, ... ). The continuous differential equation
of the (unnormalized) concentration variables y = (yo, y1,...) then reads

y(t) = QAy(1). (3)
The discrete difference equation, on the other hand, can be written as
y(t + At) = [AIQA + AJy(1) , (4)

where At is the duration of one generation, and A gives the proportion of
parents that survive one generation and enter the next one together with



their offspring. Both Eq. (3) and Eq. (4) converge for ¢ — oo towards a se-
quence distribution given by the Perron eigenvector of the matrix QA.. Hence,
for a static landscape the discrete time and the continuous time quasispecies
equations are equivalent, as far as the asymptotic state is concerned. The dis-
tinction between discrete and continuous time, however, is important when
the fitness landscape changes over time. Consider the situation of a dynamic
fitness landscape, represented by a time dependent matrix A(t). Equation (3)
becomes

y(t) = QA(t)y(t). (5)
The time-dependent difference equation, on the other hand, reads
y(t + At) = [AtQA(T) + Ny(t), (6)

The dynamic attractors of both Egs. (5) and (6) are not immediately obvious,
and therefore we cannot know to what extent the two systems differ unless we
perform a more elaborate analysis. Moreover, in a static landscape, a nonzero A
does not affect the asymptotic state of the system, which is why it normally is
set to zero in Eq. (4) [16,17]. The situation is different in a dynamic landscape,
and we have to allow for a non-zero A\ in general.

2.2  Discrete time

Let us begin our analysis with the discrete system. We set A = 0, because that
leads to the simplest equation describing a discrete time evolutionary system
in a dynamic fitness landscape. The more complicated cases with A > 0 can be
constructed from the equation for A = 0, as we will see later on. We address
the equation

y(t + At) = AtQA(H)y(t) . (7)
The solution to this equation is formally given by the time-ordered matrix
product [12] [using n = t/At and A'(v) = At A(VvAt)]
n—1
v =7{ T @'t {310
v=0
= Yaise(n)y(0). (8)

In the second line, we have introduced the notation Ygisc(n) for this matrix
product. We will occasionally refer to Yaisc(n) as a propagator, since Y gisc(n)
fully determines the state of the system at time ¢t = n At, given an initial state
at time t = 0.



Y gisc(n) can be evaluated to first order in R. The only dependency of Y gisc(n)
on R is the one in Q. When we expand Q [Eq. (2)] in R, we find
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with @ =1 —fF and § = i+ 7 —2k. As usual, J; ; denotes the Kronecker symbol.
The sum collapses into a single term, and we find to first order in R

Qi = (1= IR)bi; + (I — j)Rbi 41 + jRI; j—1 - (10)

After some algebra, we obtain from that for the matrix Y gisc(n)
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This expression fully describes to first order in R the state of the system after
n time steps.

2.8 Continuous time

Let us now turn to the continuous system. We can use the expansion of Y gis.(7)
to find an expansion for the propagator of the static continuous case. If the
fitness landscape is static, the solution to Eq. (3) is given by

y(t) = exp(QAL)y(0) . (12)
It is useful to recall that the exponential operator of a matrix is defined as
1
exp(QAt) =1+ QAt + E(QAt)z +.... (13)

We can expand the single terms in that sum separately. Equation (11) allows
us to write (QA)* as

k
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Both the sums in the expression for (QA)* and the remaining sum in Eq. (13)
can then be taken analytically. We find

v

(exp(QAt)) = (1 — lRAjt)€Ajt5i7j + (l - ])RK[Ajt, Aj+1t]5i7j+1
+ jRK[A;t, Aj_1t]d; -1, (15)

where the function K{a, b is of the form

Kla,b] = - T (e ). (16)

With Eq. (15), we have an expansion of the propagator of the continuous
system in a static landscape to first order in R. Similarly, we can treat piece-
wise constant landscapes. Under a piecewise constant landscape we under-
stand a landscape for which we can define intervals Iy = [0,t1), o = [t1,12),
I5 = [ta,t3), ..., such that the landscape does not change within any of these
intervals. Any dynamic fitness landscape can be approximated in that way.
The solution to the differential equation for that type of landscapes is given
by

Y(t) = explQA(L,)(1 — tn)] exp|QA(Ln1)(tn = tna)] -+
-+ exp[QA(0)t1]y(0) (17)

With the two simplifying assumptions that all intervals have the same length
7 and that we are observing the system only at the end of an interval, Eq. (17)
becomes (for n =t/71)

y(t) = T {H exp[QA(wm} y(0)
= Ycont(t)y(o) . (18)

The similarity to Eq. (8) is evident. Hence, in analogy to the calculation that
leads from Eq. (10) to Eq. (11), we find in the piecewise constant, continuous
case

(Ycont(t)>i' = l(l — ZRE A;(y)> exp (g A;(y)ﬂ i j
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We have used the abbreviations
A(w) =7A(vr) and K = K[A(v), AS(v)). (20)



Equation (19) fully determines to first order in R the state of the continuous
system after ¢ units of time have passed.

3 Discussion

With Egs. (11) and (19), we have expansions for the propagators of discrete-
time and continuous time evolving systems in a dynamic fitness landscape. In
this section, we will examine these expansions and discuss their properties.

3.1 A vanishing mutation rate

For R = 0, both Ygisc(t) and Ycont(t) turn into diagonal matrices. We find
(choosing 7 = At and n = t/7)

Vaslt) = exp [ 3 log (') = (/a0 -1 A0 )n . ()
Yeont(t) = exp [nz:j A“w)] . (22)

This result shows that in a dynamic fitness landscape the discrete and the
continuous model have not only quantitative, but also important qualitative
differences. While in the continuous case the state of the system at time t is
determined by the exponential of the arithmetic mean of the fitness landscape
until time ¢, in the discrete case it is determined by the exponential of the
geometric mean of the fitness landscape, which can be written as arithmetic
mean of the logarithm of the fitness landscape. The latter corresponds to
results from population genetics [18]. Since arithmetic and geometric mean
are in general different, the same fitness landscape can have very different
effects in a continuous or discrete system for R = 0. Consider a landscape, for
example, with an oscillating sharp peak,

1-— f < T/2
Ao(t) = o(l—a) or 0<t<T/ (23)
o(l+a) for T/2<t<T
Ai(t) =1 for 0 <i <1, (23b)

with 0 <a <1 and o > 0.

In the continuous system without mutations, the master sequence grows with
the rate Ay = o if time is measured in integer multiples of 7. Hence, if o >
1, the peak sequence will always supersede all other sequences for ¢ — oo.
Contrasting to that, the geometric mean is Ay = ov/1 — a2. Even for o > 1 it



is possible to have Ay < 1 if a is large enough, in which case in the discrete
system the master sequence grows slower than all others. Consequently, it will
be expelled from the population for ¢ — oo. The special case of 0 = 1 is
depicted in Fig. 1. There, the fitness landscape becomes flat in continuous
time, but acquires a hole in discrete time.

3.2  Small non-zero mutation rates

Let us now turn to the case of a small but non-zero R. From the above, we
can expect that there is a qualitative difference between discrete and con-
tinuous time even for finite R. In order to see this difference, we take the
oscillating sharp peak landscape as a generic example. A two concentration
approximation has proven useful to describe situations with o > 1 [14] but is
not applicable here, since we are particularly interested in the case o = 1, for
which the average landscape is flat in continuous time and acquires a hole in
discrete time.

The analysis of the landscape Eq. (23) is facilitated by its periodicity in time
(with period length T'). For periodic landscapes, it has been shown in Ref. [12]
that a periodic attractor with period length T exists. Its state at phase ¢ = 0
(the phase is defined as ¢ :=t mod T') is given by the principal eigenvector of
the monodromy matrix

X(0) =Y(T), (24)

where Y(t) is the propagator of the system. Equation (24) holds regardless
of continuous or discrete time. The attractor’s state at other phases ¢ can be
calculated in a similar fashion.

In Figure 2, we have displayed the order parameter ms [19,20] in the sharp
peak landscape as a function of R for the discrete time and the continuous
time system. The order parameter is given by

l

> (b)) — 2i), (25)

=0

ms(t) =

~| —

where the z;(t) represent the total (normalized) concentration of all sequences
in error class ¢ at time t. We have calculated the order parameter both from
the full monodromy matrix and from the expansions to first order in R. We
find that the expansions give reliable results for small mutation rates, but
start deviating from the true value as R approaches 1/IT. Note that both
expansions must break down beyond 1/IT’, as both the discrete and the con-
tinuous propagator assume unphysical negative values on the diagonal when
R exceeds 1/IT [Egs. (11) and (19)].



From Fig. 2, it is evident that there exists a qualitative difference between the
discrete and the continuous time system. In the system with continuous time,
the sequences stay centered around the currently active peak for arbitrarily
small but non-zero mutation rates, whereas in the system with discrete time,
the sequence distribution becomes ever more homogeneous as R — 0.

The behavior of the discrete system is easily explained. In the geometric mean
of the landscape, the peak position is actually disadvantageous, and hence
the population is driven into the remaining genotype space, which it occupies
homogeneously due to the lack of selective differences. Formally, the popula-
tion feels the geometric mean only for a vanishing mutation rate. However, by
continuity, the disadvantage at the peak position will remain for some small
but non-zero R, which leads to the continuous decay of the order parameter as
R — 0. Interestingly, the order parameter does not decay exactly to zero, but
to a value slightly below zero. This happens because the population becomes
homogeneously distributed over the whole sequence space except for the po-
sition of the oscillating peak. The resulting small imbalance in the sequence
distribution towards the opposite end of the boolean hypercube then leads to
a negative order parameter. The inset in Fig. 2 shows that our approximation
predicts this behavior accurately for small R.

Now consider the continuous system. For an infinitesimal R > 0, the depen-
dence of the asymptotic state on the initial condition is lost, as we know from
the Frobenius-Perron theorem. Since for R = 0 the evolution of the popula-
tion in time steps of size T is guided by the flat average landscape, one might
suspect that for infinitesimal R > 0 a homogeneous distribution is found as
the unique asymptotic state. This is what we observe for a population evolv-
ing in a flat static landscape with little mutation. However, the situation in a
dynamic landscape may be different, because the dynamics of the landscape
has a significant influence on the asymptotic sequence distribution. In fact, it
is possible that a flat average landscape leads to an ordered asymptotic state
for finite mutation rates R > 0. In the next subsection, we will demonstrate
this effect for the oscillating sharp peak.

3.8 Localization around an oscillating peak

We will now have a closer look at the oscillating sharp peak landscape, Eq. (23).
We are interested in the case 0 = 1, which leads to a degenerate average in
continuous time. First we note some general properties of the monodromy ma-
trix X(¢) for a periodic landscape with flat arithmetic mean. If X(¢) is given
to first order in R, it reads (assuming the average fitness is 1)

X(¢) = (1 —TIR)1 + RX(¢), (26)



where X(¢) is independent of the mutation rate R and contains only the
off-diagonal entries from Eq. (19). Since X(¢) differs from X(¢) only by a
scalar factor and an additional constant on the diagonal, the eigenvectors
of the former matrix are identical to the ones of the latter matrix, while the
eigenvalues are related through \; = (1-T1R)+R);. As a consequence, we find
that the asymptotic species distribution is given by the principal eigenvector of
the off-diagonal matrix X(gb), which is independent of R. If we took terms up
to the kth order of R into account in Eq. (19), we would find the higher order
contributions to the eigenvectors up to (k — 1)th order of R. However, with
our first-order approximation, we are only able to calculate the asymptotic
sequence concentrations to Oth order in R.

For small mutation rates R, we can restrict our analysis to the first three error
classes. For the oscillating peak, we find with help of Eq. (19) the following
expressions

0 ag(al) 0
X(¢) = Texp(T) | 18y(aT)ag(al) 0 2], (27)
0 -1 0
where
ag(€) = (2/€)[L — e~*/%Jetlo1/2 (28a)
Bs(€) = e8/2e 20172 (28b)
§=al. (28c¢)

The (unnormalized) asymptotic state follows as

Yo 0445(5)
i [ (6,9 = 20— 1) +a2(€)8s(O) 1 | - (29)
Y2 [—1

Now, if the third error class concentration is negligibly small compared to the
other two concentrations, the concentrations of the higher error classes can
be neglected as well, and the asymptotic state is approximately given by the
concentrations of the first two error classes only. From Eq. (29), we can derive
the following criterion for this approximation to be valid,

exp(£/2) > 167 /4. (30)

Hence, if £ = aT is large, which means that the fitness fluctuations are large
and slow, the population is exclusively distributed over the peak and the first
error class. For this case, we find the following simplified description of the
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population:

w0(0.6) = 1/ [1+/18(6)] | (312)
£1(0.6) = 15:(8) / |1+ \18(6)] | (31b)

The last equation implies that in the limit R — 0, the order parameter is
always larger than 1 — 2/l. This means that although the peak does not have
an average selective advantage, the evolving sequences are attracted to the
peak nonetheless. As long as [ > 1, the order parameter averaged over one
oscillation cycle is positive, which means that a population can draw a selective
advantage from being close to the peak in comparison to being far away from
it.

In Figure 3A, we display the predicted behavior of the system in a very small
mutation rate, as given by Eq. (31). The observed change in the sequence
concentrations is explained as follows. During the times at which the peak has
above-average fitness, the sequences on the peak replicate faster than all others
and hence grow exponentially until the peak’s concentration saturates around
one, while all off-peak sequences assume vanishing concentrations. Similarly,
during the times at which the peak has below-average fitness, the peak’s rela-
tive concentration decays, while the population moves onto the nearest advan-
tageous sequences, which can be found in the first error class. The sequences in
all other error classes are adaptively neutral compared to the first error class.
Hence, the amount of sequences that move into higher error classes is solely
determined by the mutation rate. If the mutation rate is small enough, the
diffusion among these neutral sequences becomes negligibly small on the time
scale of the peak oscillations T'. Therefore, the population stays mainly within
the first error class until the peak fitness switches back to the above-average
value. Thus, we find the qualitative behavior of Eq. (31): In a landscape with
a large and slowly oscillating sharp peak and a small mutation rate, the pop-
ulation oscillates between the peak sequence and the first error class in the
asymptotic state. In short, the population becomes localized close to the peak.

For extremely small mutation rates, Eq. (31) agrees perfectly with the full
numerical solution. For somewhat larger mutation rates, the main discrepancy
that arises is a phase shift between the full solution and the approximation
(Figure 3B). The phase shift moves the concentration curves towards earlier
times, i.e., the system becomes more responsive to the changing peak as the
mutation rate increases. This is intuitively clear. With a higher mutation rate,
the first error class will already be occupied to a larger extent when the peak
switches to the below-average value, so that the concentration of the one-
mutants can grow faster towards their equilibrium value. Similarly, when the
peak switches back to the above-average value, the peak sequences have a more
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favorable initial concentration, which makes them grow faster in comparison
to a lower mutation rate.

Let us shortly extend the above argumentation to broader peaks, like peaks
with linear flanks of width 1 < w < {:

w—1

A;(t) = max {1, [Ao(t) — 1]} forall 0 <i <. (32)
The sharp peak from above corresponds to a peak of width w = 1. For ar-
bitrary chosen width 1 < w < [, the population gets transported to the wth
error class due to the selection pressure during the below-average peak fitness
phases. The wth error class is in that case the boundary of the advantageous
region. Again, if the mutation rate is sufficiently small, diffusion can be ne-
glected and the population will stay in the wth error class until the peak fitness
switches back to the above-average value. This implies that for peaks of width
w > 1/2, it is possible to have mg(¢) < 0 for some intermediate oscillation
phases. In particular for the maximum width w = [, the order parameter
ms(¢) will oscillate symmetrically around zero.

In this subsection, we have only considered continuous time systems. We have
established that in a dynamic fitness landscape with flat average, a population
can draw a selective advantage from peaks that fluctuate around the average
fitness value. The same effect will occur in a discrete time system if we con-
sider the geometric mean of the fitness landscape instead. In other words, in a
landscape with flat geometric mean, a population with a small mutation rate
will draw a selective advantage from a peak that fluctuates around that geo-
metric mean. The origin of that effect is again the vanishing diffusion, which
causes the population to remain close to the peak when the peak has a height
below the mean.

3.4 Discrete systems with overlapping generations

When discussing the discrete system in Sec. 3.1 and 3.2, we have set A = 0,
i.e., we have made the assumption that every sequence can generate offspring
only once, and dies before the next generation starts to replicate. The opposite
extreme is A = 1, for which no sequence ever dies. With A\ = 1, a sequence
can theoretically stay infinitely long in the system (in practice, the growth
of new sequences is compensated through an out-flux of old sequences, but
that is not our concern here. The details of the out-flux do not influence the
unnormalized concentration variables y(t) in Egs. (3)-(6) [12]). For A = 1,
Eq. (6) converges to Eq. (5) for At — 0. In other words, for A = 1 and a small
At, Eq. (6) is an approximation to Eq. (5). This fact has been exploited in
Ref. [12] in order to calculate the continuous system numerically. However, it
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has not been evaluated in Ref. [12] to what extend the discrete approximation
behaves qualitatively different from the continuous system.

Let us briefly examine how the discrete equation with A = 1 fits into the
concepts we have developed so far. For A = 1, the propagator Y gisc(t) assumes
the form

Yaisc(t) =T {n]:[:[AtQA(yAt) + 1]} : (33)
which can be rewritten into _
Yaise () = 7{1 + Atnz_é QA (vAt) + At? 2 fo QA (vA1)QA (V' AL)
+oet At"nﬂ;QA(yAt)}. (34)

With the formulae given in Section 2, it is possible to expand this expression
to first order in R. Since the corresponding calculation is tedious, and the
result does not give any new insights, we omit this expansion here. Let us just
consider the zeroth order term,

n—1 n—1 v—1
Yaisc(t) =1+ At Z A(VAt) + AF? Z Z A(vA)A(V AY)
v=0 v=0 /=0
n—1
+o 4+ A [ A(AL) + O(R) . (35)
v=0

Compare this expression to Eqs. (21) and (22). For A = 1, we neither have
the exponential of the averaged landscape, nor do we have an expression that
depends solely on the geometric mean of the landscape. We obtain a mix-
ture between the two cases, and the size of At determines which case we are
closer to. Consequently, we obtain qualitatively wrong results from the dis-
crete approximation if the arithmetic and geometric mean of the landscape
differ significantly. Nevertheless, the discrepancies between the results can be
restricted to arbitrary small values of the mutation rate if we choose At small
enough.

As an example, consider Fig. 4. There we display the order parameter in the
oscillating sharp peak landscape obtained from the full continuous propaga-
tor, and compare it to the result from the discrete approximation for various
values of At. For a relatively large At = 2 (n = 50), Eq. (33) gives a poor
approximation of the continuous system. Throughout the whole range of R
there are significant deviations from the full solution. As we decrease At (in-
crease n), the approximation moves much closer to the true value of the order
parameter. Yet, for very small R, the order parameter always decays to zero in
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the approximation, whereas it stays close to one in the full solution. However
small we choose At, there will always be some contribution from the geometric
mean at R = 0. That causes the order parameter in the discrete approximation
to vanish for this particular landscape.

Contrasting to above situation, however, the differences between approxima-
tion and full solution are hardly noticeable in landscapes where the arithmetic
and the geometric mean have a comparable structure (a peak in the averaged
landscape is also a peak in the geometric mean of the geometric mean of the
landscape, only with a slightly different height).

4 Conclusions

We have studied time-dependent fitness landscapes in the quasispecies model
for the particular regime of small mutation rates. We have shown that the
discrete time formulation and the continuous time formulation yield qualita-
tively different outcomes in that regime. If time is updated continuously, an
evolving population adapts for R — 0 to the exponential of the average fitness
landscape, whereas in discrete time, the population adapts to the geometric
mean of the landscape.

If the arithmetic or the geometric mean of the fitness landscape have degen-
eracies, then the behavior of the respective continuous time or discrete time
system for R — 0 is determined by the effect of the landscape on the popu-
lation for some small but finite R, which can be very different from its effect
for R = 0. In particular, for the case of a slowly oscillating peak, the growth
of the population onto the peak when the peak is high is much faster than
the diffusion away from the peak when the peak is low, which implies that a
population can draw a selective advantage from that peak even if the average
(resp. geometric mean) height of the peak does not exceed the surrounding
landscape. From that observation, the following picture emerges: If the average
height of a slowly oscillating peak is larger than or equal to the surrounding
fitness landscape, than in a small mutation rate environment a population will
draw a selective advantage from being close to the peak position. Only if the
average height is truly smaller than the surrounding fitness, the peak position
will be necessarily disadvantageous.

The differences that we have found between continuous time and discrete time
systems are not only interesting from a modeling perspective. They also have
implications for the evolution of organisms that have the ability to influence
their replication cycle. In a fluctuating environment, a strain that feels the
average of the landscape will have a selective advantage over a strain that
feels the geometric mean, as the latter is generally smaller. Hence, if two
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strains are identical apart from the fact that one replicates in a synchronized
manner (all individuals generate their offspring at the same time, every At
units of time), whereas the other one replicates unsynchronized (at any point
in time, some individuals may generate offspring), then the unsynchronized
strain will out-compete the synchronized strain.

Throughout this paper, we have exclusively considered infinite populations. It
is quite likely that finite populations experience the arithmetic or geometric
mean fitness just as infinite populations do. However, since finite population
sampling occurs at every time step, the sampling might well interfere with the
averaging, such that finite populations could experience a somewhat different
landscape. Nevertheless, the effect that a fluctuating peak can lead to a se-
lective advantage will also exist in a finite population. With a small mutation
rate, the finite population will not drift away from the peak when it is below
average, and hence the population will most likely rediscover the peak when
it rises again to above average.
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Fig. 1. A landscape with an oscillating peak whose average height coincides with the
fitness of all other sequences. In continuous time, the landscape becomes completely
flat for R = 0. In discrete time, however, the population feels the geometric mean
of the fitness landscape for R = 0, which has a hole at the position of the peak.
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Fig. 2. Order parameter mg in a dynamic fitness landscape with a single oscillating
peak in a continuous time system and a discrete time system. The solid lines have
been obtained from diagonalizing the full monodromy matrix X, the dotted lines
represent the approximation to first order in R. We have used the fitness landscape
defined in Eq. (23), with a = 8/10, T' = 30, and | = 10. The graph shows a snapshot
of the order parameter at phase ¢ = 0 of its limit cycle. The inset shows the same
data, but in a log-log plot. There, we have plotted the absolute value of mg for the
discrete-time system, because m, assumes a value slightly below 0 in that case.
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Fig. 3. Sequence concentrations and order parameter of the steady state versus the
relative phase ¢/T. The upper plot (A) shows the predictions for R — 0 from
the three-concentration model [Eq. (31)], with 7" = 100, a = 0.4 and [ = 10. The
line for z9(¢) is indistinguishable from the abscissa. For sufficiently small mutation
rates and given Eq. (30), the full numeric solution is in perfect agreement with the
three-concentration model. For larger mutation rates, the main discrepancy arises
as a phase shift. For R = 10~* (B), the prediction is still in good agreement with
the full numeric solution (shown as circles) if we phase-shift our prediction by an
amount of A¢/T = 0.088.
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Fig. 4. Order parameter in a fitness landscape similar to that of Fig. 2, but with
T = 100. The solid line stems from the full continuous time propagator, and the
dots have been calculated from the discrete approximation Eq. (33). The number of
discretization time steps n is defined as T'/At. The graph shows a snapshot of the
order parameter at phase ¢ = 0 of its limit cycle.
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