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Abstract—Recognizing acoustic events is an intricate problem
for a machine and an emerging field of research. Deep neural
networks achieve convincing results and are currently the
state-of-the-art approach for many tasks. One advantage is
their implicit feature learning, opposite to an explicit feature
extraction of the input signal. In this work, we analyzed
whether more discriminative features can be learned from either
the time-domain or the frequency-domain representation of
the audio signal. For this purpose, we trained multiple deep
networks with different architectures on the Freiburg-106 and
ESC-10 datasets. Our results show that feature learning from
the frequency domain is superior to the time domain. Moreover,
additionally using convolution and pooling layers, to explore
local structures of the audio signal, significantly improves the
recognition performance and achieves state-of-the-art results.

I. INTRODUCTION

Recognizing acoustic events in natural environments, like
gunshots or police sirens, is an intricate task for a machine.
The effortlessness of the human ear and brain deceives the
complex underlying process. However, having a machine that
understands its environment, e.g. through acoustic events, is
important for many applications such as security surveillance
and ambient assisted living, especially in an aging population.
This is one reason why machine hearing is becoming a more
and more emerging field of research [1].

So far, most of the audio event recognition systems have
used hand-crafted features, extracted from the frequency do-
main of the audio signal. They are mainly borrowed from the
field of speech recognition, such as mel-scale filter banks [2],
log-frequency filter banks [3] and time-frequency filters [4].
However, with the rapid advance in computing power, feature
learning is becoming more common [5]-[7].

In this work, we use deep neural networks in general and
convolutional networks in particular for combined feature
learning and classification. They have been succesfully ap-
plied to many different pattern recognition tasks [8]-[11],
including audio event recognition [5], [6], [12], [13]. A
schematic representation of a one-dimensional convolutional
neural network is shown in Figure 1. The given network com-
prises five different layers, i.e. input, convolution, pooling,
fully connected, and output layers. Given an input signal in
the input layer, multiple filters are learned and convolved
with the input signal in the convolution layer, resulting in
various convolved signals. Multiple values of those signals
are then pooled together in the pooling layer. This introduces
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Fig. 1. Schematic diagram of a one-dimensional convolutional neural
network for audio event recognition. The network comprises five different
layers. Both feature extraction and classification are learned during training.

an invariance to small translations of the input signal. Both
convolution and pooling layers are usually applied multiple
times. Afterwards, the extracted features are weighted and
combined in the fully-connected layer and output in the
output layer. There typically exists one output neuron for
each audio event category in the output layer.

The motivational question we want to answer in this paper
is whether more discriminative features can be learned from
the time-domain or the frequency-domain representation of
the audio input signal. For this purpose, we train various
deep neural networks with different architectures on multiple
datasets both in time and frequency domain and compare
their achieved recognition results.

II. DATASETS

To train and evaluate our deep networks, we used two
different datasets, namely Freiburg-106 and ESC-10. Both
datasets contain short sound clips of isolated environmental
audio events. Note that the audio events are not overlapping.
There is only a single event present in each sound file. In
the following, we will briefly introduce both datasets. An
overview of some statistics of the two datasets before and
after preprocessing is given in Table I.

A. Freiburg-106

The Freiburg-106 [14] dataset contains 1,479 audio-based
human activities of 22 categories with a total duration of
48 min. It was collected using a consumer-level dynamic car-
dioid microphone. The audio signals were preamplified and
sampled at 44 100 Hz. Several sources of stationary ambient



TABLE I
STATISTICS OF THE USED DATASETS.

Duration Samples
Dataset Classes Total (min) Average (s) Training Test
Freiburg-106 22 48 1.90 763 755
Audio Frames 129,320 133,043
ESC-10 10 33 5.00 320 80
Audio Frames 142,101 35,606

noise were present. The average duration of a recording is
1.9s. We split the dataset into a training and test set of equal
size, i.e. every other recording was used for testing'.

B. ESC-10

The ESC-10 [15] dataset contains 400 environmental
recordings of 10 classes with a total duration of 33 min.
The recordings are uniformly distributed, i.e. 40 recordings
for each class. They were searched, downloaded, verified
and annotated by Piczak [15] from the publicly available
freesound? database. Afterwards, short sound clips of 5s
were extracted, resampled to 44 100Hz and stored with a
bitrate of 192kbit/s using Ogg Vorbis compression. The
dataset is split into five parts for a five-fold cross validation.
The average human classification accuracy is 95.7 % [15].

C. Preprocessing

Before being able to train our networks, we had to prepro-
cess all audio files to a unified format. First, we converted
all stereo audio files to mono by averaging the two channels.
This was necessary, since some audio files were only mono
recordings. Secondly, to reduce the amount of data while
maintaining most of the important frequencies, we resampled
the audio files to a sampling frequency of 16 000 Hz. Thirdly,
we changed the audio bit depth from their original formats to
32 bit floating points and scaled the amplitudes to the range
of [—1, 1]. Fourthly, we applied a rectangular sliding window
to each audio file with a window size of 150 ms and a step
size of 5ms. Thus, audio frames with a fixed size of 2,400
samples were extracted. The window size was determined via
a validation set. Applying a sliding window was necessary
since deep neural networks insist on a fixed input size. When
we trained our networks in the frequency domain, we used
a Hamming window instead of a rectangular one, calculated
the Fourier transform and concatenated the first half of both
the symmetric magnitude and phase of the Fourier transform.
Thereby, the network inputs in both time and frequency
domain were equally sized with a fixed length of 2,400
samples. Note that by calculating the Fourier transform, we
do not lose any information, since the original audio signal
can be recovered with the inverse Fourier transform.

IThis is based on unofficial communication with Stork et al. [14]
2http://www.freesound.org

TABLE II
ARCHITECTURE OF OUR IMPLEMENTED DEEP NETWORKS.

No. Layer Dimension Probability Parameters
0 Input 2,400 - -
1 Dropout 2,400 0.2 -
2 Fully Connected 384 - 921,984
3 Dropout 384 0.5 -
4 Fully Connected 384 - 147,840
5 Dropout 384 0.5 -
6 Fully Connected 384 - 147,840
7 Dropout 384 0.5 -
8 Fully Connected 384 - 147,840
9 Dropout 384 0.5 -
10  Fully Connected 384 - 147,840
11  Dropout 384 0.5 -
12 Fully Connected T - T
13 Softmax x - -

III. METHODS

We then trained both a standard deep neural network
and a convolutional network on Freiburg-106 and ESC-10
in both time and frequency domain of the audio events.
Consequently, we trained eight deep networks in total.

A. Deep Network

The architecture for the standard deep network is shown in
Table II. The network comprises 14 layers with more than 1.5
million trainable weights. The input layer O expects a signal
with 2,400 values, corresponding to a single audio frame. The
number of neurons for the output layer 15 depends on the
number of classes, i.e. 22 for Freiburg-106 and 10 for ESC-
10. To obtain a probability distribution of n output values «,
we employed the softmax function in layer 15:

exp (z;)
3 i1 exp (x;)
Between input and output layer we used five fully connected

hidden layers. We chose the rectified linear unit (relu) as a
nonlinear activation function of an output value x:

softmax (x), = fori=1,...,n. (1)

relu (z) = max (0, z) . (2)

Glorot et al. [16] showed its advantages over the sigmoid
and hyperbolic tangent as nonlinear activation functions.
To prevent the network from overfitting, we regularized it
by using dropout [17] after each layer. The probability to
randomly drop a unit in the network is 20 % for the input
layer and 50 % for all the hidden layers. Moreover, we used
a maximum norm constraint |lw||, < 1 for any weight w
in the network, as suggested by Hinton [18]. This form of
regularization bounds the value of the weights while not
driving them to be near zero, as e.g. in weight decay.

B. Convolutional Network

The architecture for our convolutional network is shown
in Table III. The network comprises 16 layers with nearly



TABLE III
ARCHITECTURE OF OUR IMPLEMENTED CONVOLUTIONAL NETWORKS.

No. Layer Dimension Size Stride Parameters
Rows Columns

0 Input 1 2,400 - - -
1 Dropout 1 2,400 - - -
2 Convolution 48 2,392 9 1 480
3 Pooling 48 598 4 4 -
4 Convolution 96 590 9 1 41,568
5 Pooling 96 147 4 4 -
6 Convolution 192 139 9 1 166,080
7 Pooling 192 34 4 4 -
8 Convolution 384 26 9 1 663,936
9 Pooling 384 6 - - -
10 Fully Connected 1 384 - - 885,120
11 Dropout 1 384 - - -
12 Fully Connected 1 384 - - 147,840
13 Dropout 1 384 - - -
14 Fully Connected 1 T - - T
15  Softmax 1 T - - -

2 million trainable parameters. The input and output layer are
identical to the standard deep network. However, in between
we additionally have convolution and pooling layers. In the
convolution layer, the input signal is convolved with multiple
learned filters of a fixed size with a fixed stride using shared
weights. We used a filter size of 9, analogous to 3x3 filters
that are often used in computer vision. The number of learned
kernels are 48, 96, 192, and 384, respectively. Note that
after the first convolution our one-dimensional input signal
does not become a two-dimensional image, but multiple
one-dimensional signals (c.f. Figure 1). Hence, we only
applied one-dimensional convolutions. The pooling layer then
reduces the size of the signal while trying to maintain the
contained information and introducing an invariance to small
translations of the input signal. The pooling size and stride
was set to 4, analogous to 2x2 pooling that is again often
used in computer vision. We used maximum pooling for all
pooling layers. As a nonlinear activation function, we again
settled for the rectified linear unit, just as in standard deep
networks. Afterwards, the extracted features from the input
signal were combined using three fully connected layers. To
regularize our network, we again used dropout layers. This
time, however, dropout was only used after the input layer
with a probability of 20% and after each fully connected
layer with a probability of 50 %.

We used the Python library Theano [19], [20] and the
NVIDIA CUDA Deep Neural Network® (cuDNN v3) library
to train our deep networks. The library allowed us to employ
the GPU* of our computer for faster training. This resulted
in a speedup of approximately ten, compared to training on

3https://developer.nvidia.com/cudnn
4GeForce GT 640 with 2GB of memory

the CPU°.

The standard deep neural networks were trained for
100 epochs. An epoch means a complete training cycle over
all audio frames of the training set. One single epoch took
nearly 30s. We started with a fixed learning rate of 0.05 and
decreased it by a factor of two after 20 epochs. Furthermore,
we selected a batch size of 256 frames and a momentum
of 0.9. In constrast, the convolutional networks, were trained
for 20 epochs. A single epoch took nearly 11 min. We again
started with a fixed learning rate of 0.05 and decreased it by
a factor of two after five epochs. Batch size and momentum
remained the same as for standard deep networks.

To predict the class label of an entire audio file X of
our test set, we first predicted each of the n audio frames
individually. Due to the softmax output layer of our network
we obtained a probability distribution among the m class
labels. Afterwards, we performed a probability voting by
adding the predicted probabilities for each frame together
and taking the class label with the maximum probability:

vote (X)) = arg max (Z xij> . 3)
j=1,....m p—

To evaluate our predicted class labels, we used the f-score

metric: .
precision - recall
f-score = 2

“

precision + recall’

which considers both precision and recall values and can
be interpreted as the weighted average of the precision and
recall.

IV. RESULTS

Our results are given in Figure 2, Table IV and Table V.
For comparison, the state-of-the-art results are 98.3 % [21]
for Freiburg-106 and approximately 80 %° [15] for ESC-10.
The human accuracy for ESC-10 is 95.7 % [15].

Figure 2 displays the average f-score in percent for the
standard deep neural networks on the validation test set.
The solid lines represent training in the frequency domain
and the dashed lines represent training in the time domain
for both Freiburg-106 and ESC-10, respectively. Note that
the shown f-score was calculated and averaged for a single
audio frame, not an entire audio file. Thus, no voting had
been performed yet. Clearly, audio events in Freiburg-106
are easier to recognize than in ESC-10. Moreover, for both
datasets, networks trained in the frequency domains achieved
a higher f-score than networks trained in the time domain.

More detailed results for Freiburg-106 are given in Ta-
ble IV. It shows the f-score for each individual audio event
category and the average f-score value, obtained with proba-
bility voting. Standard deep neural networks reach an average
f-score of 75.9% in the time domain and 97.6 % in the
frequency domain. Convolutional networks, however, reach
an overall accuracy of 91.0 % in time domain and 98.3 % in
the frequency domain. The improvement in the time domain
is therefore 15.1 % and 0.7 % in the frequency domain. The

SIntel Core i7-3770K with eight cores
5The recognition results are only given in form of a boxplot.
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Fig. 2. Comparing the validation f-score of multiple standard deep neural
networks on two datasets. The networks were trained for 100 epochs. The
solid lines represent training in the frequency domain and the dashed lines
represent training in the time domain, respectively.

TABLE IV
RECOGNITION RESULTS FOR THE FREIBURG DATASET (F-SCORE IN %).

Deep Network  Convolutional Network

No. Class Time Frequency Time Frequency
0 Background 32.3 78.0 45.8 75.0
1 Bag 71.5 98.8  95.0 100.0
2 Blender 95.1 100.0 100.0 100.0
3 Cornflakes Bowl 75.9 100.0 722 100.0
4 Cornflakes Eating 86.4 100.0  95.2 100.0
5 Cup 144 95.7  90.9 100.0
6 Dish Washer 93.7 97.8 100.0 100.0
7 Electric Razor 96.3 97.6 100.0 100.0
8 Flatware Sorting 46.7 97.6  50.0 100.0
9 Food Processor 86.7 100.0 94.1 100.0

10 Hair Dryer 90.4 100.0 100.0 100.0
11 Microwave 98.9 100.0 100.0 100.0
12 Microwave Bell 95.7 100.0  91.6 100.0
13 Microwave Door  33.3 97.7 65.1 91.3
14 Plates Sorting 59.1 98.5 86.6 100.0
15  Stirring Cup 89.7 98.3 100.0 100.0
16 Toilet Flush 70.0 95.8 88.7 96.8
17  Toothbrush 64.6 963 857 100.0
18 Vacuum Cleaner 90.9 100.0 100.0 100.0
19 Washing Machine 924 98.5 97.0 100.0
20 Water Boiler 94.0 100.0 96.9 100.0
21 Water Tap 85.2 96.6 96.3 100.0

Average 75.9 97.6 91.0 98.3

background class was most difficult to recognize by the
networks, while nearly all audio events of the Microwave
category were correctly recognized by all the different net-
works.

As for the recognition results for the ESC-10 dataset in
Table V, standard deep neural networks reach an average f-
score of 70.3 % with training in the time domain and 77.1 %
in the frequency domain. Convolutional networks improve
these results by 13.4% to 83.7% in the time domain and
by 12.8 % to 89.9 % in the frequency domain, respectively.
Nearly all audio events of the dog bark class were correctly

TABLE V
RECOGNITION RESULTS FOR THE ESC-10 DATASET (F-SCORE IN %).

Deep Network  Convolutional Network

No. Class Time Frequency Time Frequency
0 Baby Cry 62.5 762 933 100.0
1 Chainsaw 80.0 714 75.0 71.4
2 Clock Tick 66.6 80.0 842 80.0
3 Dog Bark 87.5 100.0 100.0 100.0
4 Fire Crackling 54.5 40.0 85.7 80.0
5 Helicopter 94.1 88.9 941 100.0
6 Person Sneeze 50.0 66.7 714 80.0
7 Rain 61.5 85.7  66.7 94.1
8 Rooster 76.9 85.7 100.0 100.0
9 Sea Waves 69.6 762  66.7 93.3

Average 70.3 77.1 837 89.9

recognized by all the different networks, while recognizing
a chainsaw was most difficult in the frequency domain and
sea waves most difficult in the time domain, respectively.

V. DISCUSSION

Deep convolutional networks are the state-of-the-art ap-
proach for many pattern recognition tasks, including audio
event recognition. One reason is the implicit feature learning
instead of an explicit feature extraction of the input signal.
In this work, we analyzed whether more suitable features
can be learned from either the time domain or the frequency
domain.

Our results show that learning from the frequency domain
is consistently superior to learning from the time domain on
both datasets Freiburg-106 and ESC-10. Our trained deep
neural networks achieved state-of-the-art results. Accord-
ingly, more discriminative features could be learned in the
frequency domain.

Moreover, additionally adding convolution and pooling
layers to the deep neural network could most of the time
significantly improve the achieved f-score. One exception is
for learning in the frequency domain on Freiburg-106, where
a standard deep network alone already reached comparable
state-of-the-art results. Thus, exploring local structures of
the input signal both in time and frequency domain seems
reasonable.

When training deep networks for audio event recognition,
we experienced heavy overfitting of the networks, especially
when trained in the time domain. Therefore, we had to
intensively regularize the network by employing dropout in
each layer. Additionally, we constrained the norm of each
weight, as suggested by Hinton [18]. Its main advantage over
other regularization methods, like weight decay for example,
is that it does not drive the weights to be near zero. This partly
prevented the networks from overfitting. However, overfitting
to a small extent was still noticeable.

We experienced that some classes were extraordinarily
difficult to recognize, e.g. the background class in Freiburg-
106. When listening to the audio files of those classes, we
noticed that most of the time either a long silence was



present in these files or no generic pattern was recognizable.
A careful filtering of these files could improve the overall
recognition accuracy and should be considered.

As already indicated, we determined the window size of
150 ms by employing a validation set that was split from
the training data. We noticed that a too small window size,
i.e. below 50ms, could not grasp the important information
contained in the audio signal. A too large window, however,
required many parameters in the first fully connected layer of
our standard deep neural networks, thus resulting in a long
training time. A window size of 150 ms was a reasonable
compromise between accuracy and training time.

When training our networks in the frequency domain, we
used both the magnitude and phase information of the Fourier
transform. The main reason for this was to maintain the same
number of input samples that were used for the time domain
signal. Consequently, we were able to use the same network
architecture in both time and frequency domain. Not too
surprisingly, when we removed the phase information, the
recognition results of our networks remained the same. In
contrast, when training with the phase information only, the
networks kept guessing randomly.

Instead of using a rectified linear unit (2) as a nonlinear
activation function, we also tested maxout networks [22]
with a pooling size of 5. We did not notice any differences
in our obtained recognition results, however. Since maxout
networks are computationally more expensive than rectified
linear units, we settled for the latter.

Furthermore, besides using probability voting (3), we also
tried majority voting. For this purpose, we predicted the
individual class label for each audio frame and assigned the
most frequently predicted class label to the audio file. Our
results, however, indicated that probability voting is more
appropriate for audio event recognition than majority voting.

VI. CONCLUSIONS

Deep learning is suitable for audio event recognition in
both the time domain and the frequency domain of the audio
signal. However, more discriminative features are learned
by the network in the frequency domain, achieving superior
results. Exploring the local structure of audio signals by em-
ploying convolution and pooling layers additionally improves
the recognition performance of the networks, which then
achieve state-of-the-art results. Further research will focus on
visualizing and understanding what our deep networks have
learned both from the time-domain and frequency-domain
representation.
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